Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 May 22;265(1399):847–854. doi: 10.1098/rspb.1998.0369

Mapping the ranges and relative abundance of the two principal African malaria vectors, Anopheles gambiae sensu stricto and An. arabiensis, using climate data.

S W Lindsay 1, L Parson 1, C J Thomas 1
PMCID: PMC1689061  PMID: 9633110

Abstract

Members of the Anopheles gambiae complex are major malaria vectors in Africa. We tested the hypothesis that the range and relative abundance of the two major vectors in the complex, An. gambiae sensu stricto and An. arabiensis, could be defined by climate. Climate was characterized at mosquito survey sites by extracting data for each location from climate surfaces using a Geographical Information System. Annual precipitation, together with annual and wet season temperature, defined the ranges of both vectors and were used to map suitable climate zones. Using data from West Africa, we found that where the species were sympatric, An. gambiae s.s. predominated in saturated environments, and An. arabiensis was more common in sites subject to desiccation (r2 = 0.875, p < 0.001). We used the nonlinear equation that best described this relationship to map habitat suitability across Africa. This simple model predicted accurately the relative abundance of both vectors in Tanzania (rs = 0.745, p = 0.002), where species composition is highly variable. The combined maps of species' range and relative abundance showed very good agreement with published maps. This technique represents a new approach to mapping the distribution of malaria vectors over large areas and may facilitate species-specific vector control activities.

Full Text

The Full Text of this article is available as a PDF (601.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bryan J. H., Petrarca V., Di Deco M. A., Coluzzi M. Adult behaviour of members of the Anopheles gambiae complex in the Gambia with special reference to An. melas and its chromosomal variants. Parassitologia. 1987 May-Dec;29(2-3):221–249. [PubMed] [Google Scholar]
  2. Carlson D. A., Service M. W. Identification of mosquitoes of Anopheles gambiae species complex A and B by analysis of cuticular components. Science. 1980 Mar 7;207(4435):1089–1091. doi: 10.1126/science.7355276. [DOI] [PubMed] [Google Scholar]
  3. Chinery W. A. Effects of ecological changes on the malaria vectors Anopheles funestus and the Anopheles gambiae complex of mosquitoes in Accra, Ghana. J Trop Med Hyg. 1984 Apr;87(2):75–81. [PubMed] [Google Scholar]
  4. Collins F. H., Mendez M. A., Rasmussen M. O., Mehaffey P. C., Besansky N. J., Finnerty V. A ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex. Am J Trop Med Hyg. 1987 Jul;37(1):37–41. doi: 10.4269/ajtmh.1987.37.37. [DOI] [PubMed] [Google Scholar]
  5. Coluzzi M. Heterogeneities of the malaria vectorial system in tropical Africa and their significance in malaria epidemiology and control. Bull World Health Organ. 1984;62 (Suppl):107–113. [PMC free article] [PubMed] [Google Scholar]
  6. Coluzzi M. Malaria vector analysis and control. Parasitol Today. 1992 Apr;8(4):113–118. doi: 10.1016/0169-4758(92)90277-9. [DOI] [PubMed] [Google Scholar]
  7. Coluzzi M., Sabatini A., Petrarca V., Di Deco M. A. Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans R Soc Trop Med Hyg. 1979;73(5):483–497. doi: 10.1016/0035-9203(79)90036-1. [DOI] [PubMed] [Google Scholar]
  8. Faye O., Konate L., Mouchet J., Fontenille D., Sy N., Hebrard G., Herve J. P. Indoor resting by outdoor biting females of Anopheles gambiae complex (Diptera:Culicidae) in the Sahel of northern Senegal. J Med Entomol. 1997 May;34(3):285–289. doi: 10.1093/jmedent/34.3.285. [DOI] [PubMed] [Google Scholar]
  9. Gabinaud A. Ecological mapping to support mosquito control on the French Mediterranean coast. Parasitol Today. 1987 Oct;3(10):317–320. doi: 10.1016/0169-4758(87)90192-x. [DOI] [PubMed] [Google Scholar]
  10. Hill S. M., Crampton J. M. Synthetic DNA probes to identify members of the Anopheles gambiae complex and to distinguish the two major vectors of malaria within the complex, An. gambiae s.s. and An. arabiensis. Am J Trop Med Hyg. 1994 Mar;50(3):312–321. doi: 10.4269/ajtmh.1994.50.312. [DOI] [PubMed] [Google Scholar]
  11. Hunt R. H. A cytological technique for the study of Anopheles gambiae complex. Parassitologia. 1973 Apr-Aug;15(1):137–139. [PubMed] [Google Scholar]
  12. Linthicum K. J., Bailey C. L., Davies F. G., Tucker C. J. Detection of Rift Valley fever viral activity in Kenya by satellite remote sensing imagery. Science. 1987 Mar 27;235(4796):1656–1659. doi: 10.1126/science.3823909. [DOI] [PubMed] [Google Scholar]
  13. Mnzava A. E., Kilama W. L. Observations on the distribution of the Anopheles gambiae complex in Tanzania. Acta Trop. 1986 Sep;43(3):277–282. [PubMed] [Google Scholar]
  14. Omer S. M., Cloudsley-Thompson J. L. Survival of female Anopheles gambiae Giles through a 9-month dry season in Sudan. Bull World Health Organ. 1970;42(2):319–330. [PMC free article] [PubMed] [Google Scholar]
  15. Petrarca V., Carrara G. C., Di Deco M. A., Petrangeli G. Il complesso Anopheles gambiae in Guinea Bissau. Parassitologia. 1983 Apr;25(1):29–39. [PubMed] [Google Scholar]
  16. Petrarca V., Petrangeli G., Rossi P., Sabatinelli G. Etude chromosomisque d'Anopheles gambiae et Anopheles arabiensis à Quagadougou (Burkina Faso) et dans quelques villages voisins. Parassitologia. 1986 Apr;28(1):41–61. [PubMed] [Google Scholar]
  17. Petrarca V., Vercruysse J., Coluzzi M. Observations on the Anopheles gambiae complex in the Senegal River Basin, West Africa. Med Vet Entomol. 1987 Jul;1(3):303–312. doi: 10.1111/j.1365-2915.1987.tb00359.x. [DOI] [PubMed] [Google Scholar]
  18. Pope K. O., Rejmankova E., Savage H. M., Arredondo-Jimenez J. I., Rodriguez M. H., Roberts D. R. Remote sensing of tropical wetlands for malaria control in Chiapas, Mexico. Ecol Appl. 1994 Feb;4(1):81–90. [PubMed] [Google Scholar]
  19. Rejmankova E., Roberts D. R., Pawley A., Manguin S., Polanco J. Predictions of adult Anopheles albimanus densities in villages based on distances to remotely sensed larval habitats. Am J Trop Med Hyg. 1995 Nov;53(5):482–488. doi: 10.4269/ajtmh.1995.53.482. [DOI] [PubMed] [Google Scholar]
  20. Roberts D. R., Paris J. F., Manguin S., Harbach R. E., Woodruff R., Rejmankova E., Polanco J., Wullschleger B., Legters L. J. Predictions of malaria vector distribution in Belize based on multispectral satellite data. Am J Trop Med Hyg. 1996 Mar;54(3):304–308. doi: 10.4269/ajtmh.1996.54.304. [DOI] [PubMed] [Google Scholar]
  21. Thomson M. C., Connor S. J., Milligan P. J., Flasse S. P. The ecology of malaria--as seen from Earth-observation satellites. Ann Trop Med Parasitol. 1996 Jun;90(3):243–264. doi: 10.1080/00034983.1996.11813050. [DOI] [PubMed] [Google Scholar]
  22. Trape J. F., Lefebvre-Zante E., Legros F., Ndiaye G., Bouganali H., Druilhe P., Salem G. Vector density gradients and the epidemiology of urban malaria in Dakar, Senegal. Am J Trop Med Hyg. 1992 Aug;47(2):181–189. doi: 10.4269/ajtmh.1992.47.181. [DOI] [PubMed] [Google Scholar]
  23. White G. B. Anopheles gambiae complex and disease transmission in Africa. Trans R Soc Trop Med Hyg. 1974;68(4):278–301. doi: 10.1016/0035-9203(74)90035-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES