Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 May 22;265(1399):869–874. doi: 10.1098/rspb.1998.0372

Switch in rod opsin gene expression in the European eel, Anguilla anguilla (L.).

A J Hope 1, J C Partridge 1, P K Hayes 1
PMCID: PMC1689062  PMID: 9633112

Abstract

The rod photoreceptors of the European eel, Anguilla anguilla (L.), alter their wavelength of maximum sensitivity (lambda max) from c.a. 523 nm to c.a. 482 nm at maturation, a switch involving the synthesis of a new visual pigment protein (opsin) that is inserted into the outer segments of existing rods. We artificially induced the switch in rod opsin production by the administration of hormones, and monitored the switch at the level of mRNA accumulation using radiolabelled oligonuleotides that hybridized differently to the two forms of eel rod opsin. The production of the deep-sea form of rod opsin was detected 6 h after the first hormone injection, and the switch in rod opsin expression was complete within four weeks, at which time only the mRNA for the deep-sea opsin was detectable in the retinal cells. It is suggested that this system could be used as a tractable model for studying the regulatory control of opsin gene expression.

Full Text

The Full Text of this article is available as a PDF (225.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archer S. N., Lythgoe J. N. The visual pigment basis for cone polymorphism in the guppy, Poecilia reticulata. Vision Res. 1990;30(2):225–233. doi: 10.1016/0042-6989(90)90038-m. [DOI] [PubMed] [Google Scholar]
  2. Archer S., Hope A., Partridge J. C. The molecular basis for the green-blue sensitivity shift in the rod visual pigments of the European eel. Proc Biol Sci. 1995 Dec 22;262(1365):289–295. doi: 10.1098/rspb.1995.0208. [DOI] [PubMed] [Google Scholar]
  3. Baldwin J. M. The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 1993 Apr;12(4):1693–1703. doi: 10.1002/j.1460-2075.1993.tb05814.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beatty D. D. Visual pigments of the american eel Anguilla rostrata. Vision Res. 1975 Jul;15(7):771–776. doi: 10.1016/0042-6989(75)90254-0. [DOI] [PubMed] [Google Scholar]
  5. Brawerman G. Determinants of messenger RNA stability. Cell. 1987 Jan 16;48(1):5–6. doi: 10.1016/0092-8674(87)90346-1. [DOI] [PubMed] [Google Scholar]
  6. Bridges C. D. Spectroscopic properties of porphyropsins. Vision Res. 1967 May;7(5):349–369. doi: 10.1016/0042-6989(67)90044-2. [DOI] [PubMed] [Google Scholar]
  7. Brock M. L., Shapiro D. J. Estrogen stabilizes vitellogenin mRNA against cytoplasmic degradation. Cell. 1983 Aug;34(1):207–214. doi: 10.1016/0092-8674(83)90151-4. [DOI] [PubMed] [Google Scholar]
  8. Caput D., Beutler B., Hartog K., Thayer R., Brown-Shimer S., Cerami A. Identification of a common nucleotide sequence in the 3'-untranslated region of mRNA molecules specifying inflammatory mediators. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1670–1674. doi: 10.1073/pnas.83.6.1670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DesJardin L. E., Lockwood M. K., Hauswirth W. W. Bovine opsin gene expression exhibits a late fetal to adult regulatory switch. J Neurosci Res. 1995 Apr 15;40(6):728–736. doi: 10.1002/jnr.490400604. [DOI] [PubMed] [Google Scholar]
  10. Fitzgibbon J., Hope A., Slobodyanyuk S. J., Bellingham J., Bowmaker J. K., Hunt D. M. The rhodopsin-encoding gene of bony fish lacks introns. Gene. 1995 Oct 27;164(2):273–277. doi: 10.1016/0378-1119(95)00458-i. [DOI] [PubMed] [Google Scholar]
  11. Furuichi Y., LaFiandra A., Shatkin A. J. 5'-Terminal structure and mRNA stability. Nature. 1977 Mar 17;266(5599):235–239. doi: 10.1038/266235a0. [DOI] [PubMed] [Google Scholar]
  12. Hubbard R., Sperling L. The colors of the visual pigment chromophores. Exp Eye Res. 1973 Dec 24;17(6):581–589. doi: 10.1016/0014-4835(73)90087-0. [DOI] [PubMed] [Google Scholar]
  13. Ivarie R. D., O'Farrell P. H. The glucocorticoid domain: steroid-mediated changes in the rate of synthesis of rat hepatoma proteins. Cell. 1978 Jan;13(1):41–55. doi: 10.1016/0092-8674(78)90136-8. [DOI] [PubMed] [Google Scholar]
  14. Parkinson T. J., Follett B. K. Thyroidectomy abolishes seasonal testicular cycles of Soay rams. Proc Biol Sci. 1995 Jan 23;259(1354):1–6. doi: 10.1098/rspb.1995.0001. [DOI] [PubMed] [Google Scholar]
  15. Partridge J. C., De Grip W. J. A new template for rhodopsin (vitamin A1 based) visual pigments. Vision Res. 1991;31(4):619–630. doi: 10.1016/0042-6989(91)90002-m. [DOI] [PubMed] [Google Scholar]
  16. Röhlich P., van Veen T., Szél A. Two different visual pigments in one retinal cone cell. Neuron. 1994 Nov;13(5):1159–1166. doi: 10.1016/0896-6273(94)90053-1. [DOI] [PubMed] [Google Scholar]
  17. Schutz G., Killewich L., Chen G., Feigelson P. Control of the mRNA for hepatic tryptophan oxygenase during hormonal and substrate induction. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1017–1020. doi: 10.1073/pnas.72.3.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yamamoto K. R. Steroid receptor regulated transcription of specific genes and gene networks. Annu Rev Genet. 1985;19:209–252. doi: 10.1146/annurev.ge.19.120185.001233. [DOI] [PubMed] [Google Scholar]
  19. Yokoyama S. Amino acid replacements and wavelength absorption of visual pigments in vertebrates. Mol Biol Evol. 1995 Jan;12(1):53–61. doi: 10.1093/oxfordjournals.molbev.a040190. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES