Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 Jun 7;265(1400):989–994. doi: 10.1098/rspb.1998.0388

Running in the real world: adjusting leg stiffness for different surfaces.

D P Ferris 1, M Louie 1, C T Farley 1
PMCID: PMC1689165  PMID: 9675909

Abstract

A running animal coordinates the actions of many muscles, tendons, and ligaments in its leg so that the overall leg behaves like a single mechanical spring during ground contact. Experimental observations have revealed that an animal's leg stiffness is independent of both speed and gravity level, suggesting that it is dictated by inherent musculoskeletal properties. However, if leg stiffness was invariant, the biomechanics of running (e.g. peak ground reaction force and ground contact time) would change when an animal encountered different surfaces in the natural world. We found that human runners adjust their leg stiffness to accommodate changes in surface stiffness, allowing them to maintain similar running mechanics on different surfaces. These results provide important insight into mechanics and control of animal locomotion and suggest that incorporating an adjustable leg stiffness in the design of hopping and running robots is important if they are to match the agility and speed of animals on varied terrain.

Full Text

The Full Text of this article is available as a PDF (167.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biewener A. A. Scaling body support in mammals: limb posture and muscle mechanics. Science. 1989 Jul 7;245(4913):45–48. doi: 10.1126/science.2740914. [DOI] [PubMed] [Google Scholar]
  2. Blickhan R. The spring-mass model for running and hopping. J Biomech. 1989;22(11-12):1217–1227. doi: 10.1016/0021-9290(89)90224-8. [DOI] [PubMed] [Google Scholar]
  3. Cavagna G. A. Force platforms as ergometers. J Appl Physiol. 1975 Jul;39(1):174–179. doi: 10.1152/jappl.1975.39.1.174. [DOI] [PubMed] [Google Scholar]
  4. Cavanagh P. R., Lafortune M. A. Ground reaction forces in distance running. J Biomech. 1980;13(5):397–406. doi: 10.1016/0021-9290(80)90033-0. [DOI] [PubMed] [Google Scholar]
  5. Farley C. T., Blickhan R., Saito J., Taylor C. R. Hopping frequency in humans: a test of how springs set stride frequency in bouncing gaits. J Appl Physiol (1985) 1991 Dec;71(6):2127–2132. doi: 10.1152/jappl.1991.71.6.2127. [DOI] [PubMed] [Google Scholar]
  6. Farley C. T., Glasheen J., McMahon T. A. Running springs: speed and animal size. J Exp Biol. 1993 Dec;185:71–86. doi: 10.1242/jeb.185.1.71. [DOI] [PubMed] [Google Scholar]
  7. Farley C. T., González O. Leg stiffness and stride frequency in human running. J Biomech. 1996 Feb;29(2):181–186. doi: 10.1016/0021-9290(95)00029-1. [DOI] [PubMed] [Google Scholar]
  8. Ferris D. P., Farley C. T. Interaction of leg stiffness and surfaces stiffness during human hopping. J Appl Physiol (1985) 1997 Jan;82(1):15–14. doi: 10.1152/jappl.1997.82.1.15. [DOI] [PubMed] [Google Scholar]
  9. Greene P. R., McMahon T. A. Reflex stiffness of man's anti-gravity muscles during kneebends while carrying extra weights. J Biomech. 1979;12(12):881–891. doi: 10.1016/0021-9290(79)90056-3. [DOI] [PubMed] [Google Scholar]
  10. He J. P., Kram R., McMahon T. A. Mechanics of running under simulated low gravity. J Appl Physiol (1985) 1991 Sep;71(3):863–870. doi: 10.1152/jappl.1991.71.3.863. [DOI] [PubMed] [Google Scholar]
  11. Hoffer J. A., Andreassen S. Regulation of soleus muscle stiffness in premammillary cats: intrinsic and reflex components. J Neurophysiol. 1981 Feb;45(2):267–285. doi: 10.1152/jn.1981.45.2.267. [DOI] [PubMed] [Google Scholar]
  12. Houk J. C. An assessment of stretch reflex function. Prog Brain Res. 1976;44:303–314. doi: 10.1016/S0079-6123(08)60741-4. [DOI] [PubMed] [Google Scholar]
  13. Ker R. F., Bennett M. B., Bibby S. R., Kester R. C., Alexander R. M. The spring in the arch of the human foot. Nature. 1987 Jan 8;325(7000):147–149. doi: 10.1038/325147a0. [DOI] [PubMed] [Google Scholar]
  14. McMahon T. A., Cheng G. C. The mechanics of running: how does stiffness couple with speed? J Biomech. 1990;23 (Suppl 1):65–78. doi: 10.1016/0021-9290(90)90042-2. [DOI] [PubMed] [Google Scholar]
  15. McMahon T. A., Greene P. R. Fast running tracks. Sci Am. 1978 Dec;239(6):148–163. doi: 10.1038/scientificamerican1278-148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McMahon T. A., Greene P. R. The influence of track compliance on running. J Biomech. 1979;12(12):893–904. doi: 10.1016/0021-9290(79)90057-5. [DOI] [PubMed] [Google Scholar]
  17. Nichols T. R., Houk J. C. Improvement in linearity and regulation of stiffness that results from actions of stretch reflex. J Neurophysiol. 1976 Jan;39(1):119–142. doi: 10.1152/jn.1976.39.1.119. [DOI] [PubMed] [Google Scholar]
  18. Nigg B. M., Yeadon M. R. Biomechanical aspects of playing surfaces. J Sports Sci. 1987 Summer;5(2):117–145. doi: 10.1080/02640418708729771. [DOI] [PubMed] [Google Scholar]
  19. Nilsson J., Thorstensson A. Ground reaction forces at different speeds of human walking and running. Acta Physiol Scand. 1989 Jun;136(2):217–227. doi: 10.1111/j.1748-1716.1989.tb08655.x. [DOI] [PubMed] [Google Scholar]
  20. Pearson K. G. Proprioceptive regulation of locomotion. Curr Opin Neurobiol. 1995 Dec;5(6):786–791. doi: 10.1016/0959-4388(95)80107-3. [DOI] [PubMed] [Google Scholar]
  21. Prochazka A. Sensorimotor gain control: a basic strategy of motor systems? Prog Neurobiol. 1989;33(4):281–307. doi: 10.1016/0301-0082(89)90004-x. [DOI] [PubMed] [Google Scholar]
  22. Roberts T. J., Marsh R. L., Weyand P. G., Taylor C. R. Muscular force in running turkeys: the economy of minimizing work. Science. 1997 Feb 21;275(5303):1113–1115. doi: 10.1126/science.275.5303.1113. [DOI] [PubMed] [Google Scholar]
  23. Stein R. B., Capaday C. The modulation of human reflexes during functional motor tasks. Trends Neurosci. 1988 Jul;11(7):328–332. doi: 10.1016/0166-2236(88)90097-5. [DOI] [PubMed] [Google Scholar]
  24. Zamparo P., Perini R., Orizio C., Sacher M., Ferretti G. The energy cost of walking or running on sand. Eur J Appl Physiol Occup Physiol. 1992;65(2):183–187. doi: 10.1007/BF00705078. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES