Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 Jun 22;265(1401):1065–1073. doi: 10.1098/rspb.1998.0400

Alternative hypotheses linking the immune system and mate choice for good genes

D F Westneat, T R Birkhead
PMCID: PMC1689173

Abstract

Why do males often have extravagant morphological and behavioural traits, and why do females prefer to mate with such males? The answers have been the focus of considerable debate since Darwin's The descent of man, and selection in relation to sex appeared in 1871. Recently the broadening of investigation to include fields outside evolutionary biology has shed new light on mate choice and sexual selection. Here, we focus on a specific set of hypotheses relating the biology of resisting disease-causing organisms with the production of condition-dependent sexual signals (advertisements). We present a framework that distinguishes three different hypotheses about trade-offs within the immune system that affect general condition. Hamilton and Zuk's original hypothesis suggests that hosts fight off disease through resistance to particular pathogens, which consequently lowers resistance to other pathogens. Changes in pathogens over evolutionary time in turn favours changes in which genes confer the best resistance. Alternatively, the immunocompetence hypotheses suggests that the energetic costs of mounting a response to any pathogen compete for resources with other things, such as producing or maintaining advertisements. Finally, improving resistance to pathogens could increase the negative impacts of the immune system on the host, via immunopathologies such as allergies or autoimmune diseases. If both disease and immunopathology affect condition, then sexual advertisements could signal a balance between the two. Studies of hypothesized links between genes, condition, the immune system and advertisements likely will require careful consideration of which hypothesis is being considered, and may necessitate different measures of immune system responses and different experimental protocols.

Full Text

The Full Text of this article is available as a PDF (194.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baracos V. E., Whitmore W. T., Gale R. The metabolic cost of fever. Can J Physiol Pharmacol. 1987 Jun;65(6):1248–1254. doi: 10.1139/y87-199. [DOI] [PubMed] [Google Scholar]
  2. Briles W. E., Stone H. A., Cole R. K. Marek's disease: effects of B histocompatibility alloalleles in resistant and susceptible chicken lines. Science. 1977 Jan 14;195(4274):193–195. doi: 10.1126/science.831269. [DOI] [PubMed] [Google Scholar]
  3. Cheng S., Rothschild M. F., Lamont S. J. Estimates of quantitative genetic parameters of immunological traits in the chicken. Poult Sci. 1991 Oct;70(10):2023–2027. doi: 10.3382/ps.0702023. [DOI] [PubMed] [Google Scholar]
  4. Cook M. E., Miller C. C., Park Y., Pariza M. Immune modulation by altered nutrient metabolism: nutritional control of immune-induced growth depression. Poult Sci. 1993 Jul;72(7):1301–1305. doi: 10.3382/ps.0721301. [DOI] [PubMed] [Google Scholar]
  5. De Boer R. J., Perelson A. S. How diverse should the immune system be? Proc Biol Sci. 1993 Jun 22;252(1335):171–175. doi: 10.1098/rspb.1993.0062. [DOI] [PubMed] [Google Scholar]
  6. Frank S. A. Recognition and polymorphism in host-parasite genetics. Philos Trans R Soc Lond B Biol Sci. 1994 Nov 29;346(1317):283–293. doi: 10.1098/rstb.1994.0145. [DOI] [PubMed] [Google Scholar]
  7. Grafen A. Biological signals as handicaps. J Theor Biol. 1990 Jun 21;144(4):517–546. doi: 10.1016/s0022-5193(05)80088-8. [DOI] [PubMed] [Google Scholar]
  8. Gridley G., McLaughlin J. K., Ekbom A., Klareskog L., Adami H. O., Hacker D. G., Hoover R., Fraumeni J. F., Jr Incidence of cancer among patients with rheumatoid arthritis. J Natl Cancer Inst. 1993 Feb 17;85(4):307–311. doi: 10.1093/jnci/85.4.307. [DOI] [PubMed] [Google Scholar]
  9. Gross W. B. Effects of dose of antigen and social environment on antibody response of high and low antibody response chickens. Poult Sci. 1986 Apr;65(4):687–692. doi: 10.3382/ps.0650687. [DOI] [PubMed] [Google Scholar]
  10. Gross W. G., Siegel P. B., Hall R. W., Domermuth C. H., DuBoise R. T. Production and persistence of antibodies in chickens to sheep erythrocytes. 2. Resistance to infectious diseases. Poult Sci. 1980 Feb;59(2):205–210. doi: 10.3382/ps.0590205. [DOI] [PubMed] [Google Scholar]
  11. Grossman C. J. Interactions between the gonadal steroids and the immune system. Science. 1985 Jan 18;227(4684):257–261. doi: 10.1126/science.3871252. [DOI] [PubMed] [Google Scholar]
  12. Gustafsson L., Nordling D., Andersson M. S., Sheldon B. C., Qvarnström A. Infectious diseases, reproductive effort and the cost of reproduction in birds. Philos Trans R Soc Lond B Biol Sci. 1994 Nov 29;346(1317):323–331. doi: 10.1098/rstb.1994.0149. [DOI] [PubMed] [Google Scholar]
  13. Hamilton W. D., Zuk M. Heritable true fitness and bright birds: a role for parasites? Science. 1982 Oct 22;218(4570):384–387. doi: 10.1126/science.7123238. [DOI] [PubMed] [Google Scholar]
  14. Hill A. V., Allsopp C. E., Kwiatkowski D., Anstey N. M., Twumasi P., Rowe P. A., Bennett S., Brewster D., McMichael A. J., Greenwood B. M. Common west African HLA antigens are associated with protection from severe malaria. Nature. 1991 Aug 15;352(6336):595–600. doi: 10.1038/352595a0. [DOI] [PubMed] [Google Scholar]
  15. Kean R. P., Cahaner A., Freeman A. E., Lamont S. J. Direct and correlated responses to multitrait, divergent selection for immunocompetence. Poult Sci. 1994 Jan;73(1):18–32. doi: 10.3382/ps.0730018. [DOI] [PubMed] [Google Scholar]
  16. Kinlen L. J. Malignancy in autoimmune diseases. J Autoimmun. 1992 Apr;5 (Suppl A):363–371. doi: 10.1016/0896-8411(92)90055-u. [DOI] [PubMed] [Google Scholar]
  17. Klasing K. C., Laurin D. E., Peng R. K., Fry D. M. Immunologically mediated growth depression in chicks: influence of feed intake, corticosterone and interleukin-1. J Nutr. 1987 Sep;117(9):1629–1637. doi: 10.1093/jn/117.9.1629. [DOI] [PubMed] [Google Scholar]
  18. Kreukniet M. B., van der Zijpp A. J., Nieuwland M. G. Effects of route of immunization, adjuvant and unrelated antigens on the humoral immune response in lines of chickens selected for antibody production against sheep erythrocytes. Vet Immunol Immunopathol. 1992 Jun;33(1-2):115–127. doi: 10.1016/0165-2427(92)90039-s. [DOI] [PubMed] [Google Scholar]
  19. Lamont S. J., Bolin C., Cheville N. Genetic resistance to fowl cholera is linked to the major histocompatibility complex. Immunogenetics. 1987;25(5):284–289. doi: 10.1007/BF00404420. [DOI] [PubMed] [Google Scholar]
  20. Luster M. I., Portier C., Pait D. G., White K. L., Jr, Gennings C., Munson A. E., Rosenthal G. J. Risk assessment in immunotoxicology. I. Sensitivity and predictability of immune tests. Fundam Appl Toxicol. 1992 Feb;18(2):200–210. doi: 10.1016/0272-0590(92)90047-l. [DOI] [PubMed] [Google Scholar]
  21. doi: 10.1098/rspb.1997.0141. [DOI] [PMC free article] [Google Scholar]
  22. Parmentier H. K., Siemonsma R., Nieuwland M. G. Immune responses to bovine serum albumin in chicken lines divergently selected for antibody responses to sheep red blood cells. Poult Sci. 1994 Jun;73(6):825–835. doi: 10.3382/ps.0730825. [DOI] [PubMed] [Google Scholar]
  23. Potts W. K., Manning C. J., Wakeland E. K. Mating patterns in seminatural populations of mice influenced by MHC genotype. Nature. 1991 Aug 15;352(6336):619–621. doi: 10.1038/352619a0. [DOI] [PubMed] [Google Scholar]
  24. Praharaj N. K., Dunnington E. A., Siegel P. B. Growth, immunoresponsiveness, and disease resistance of diverse stocks of chickens reared under two nutritional regimens. Poult Sci. 1995 Nov;74(11):1721–1729. doi: 10.3382/ps.0741721. [DOI] [PubMed] [Google Scholar]
  25. Saino N., Bolzern A. M., Møller A. P. Immunocompetence, ornamentation, and viability of male barn swallows (Hirundo rustica). Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):549–552. doi: 10.1073/pnas.94.2.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Scott T. R., Dunnington E. A., Siegel P. B. Brucella abortus antibody response of white Leghorn chickens selected for high and low antibody responsiveness to sheep erythrocytes. Poult Sci. 1994 Feb;73(2):346–349. doi: 10.3382/ps.0730346. [DOI] [PubMed] [Google Scholar]
  27. Wedekind C. Mate choice and maternal selection for specific parasite resistances before; during and after fertilization. Philos Trans R Soc Lond B Biol Sci. 1994 Nov 29;346(1317):303–311. doi: 10.1098/rstb.1994.0147. [DOI] [PubMed] [Google Scholar]
  28. Wiener E., Bandieri A. Differences in antigen handling by peritoneal macrophages from the Biozzi high and low responder lines of mice. Eur J Immunol. 1974 Jul;4(7):457–463. doi: 10.1002/eji.1830040703. [DOI] [PubMed] [Google Scholar]
  29. Wilder R. L. Neuroendocrine-immune system interactions and autoimmunity. Annu Rev Immunol. 1995;13:307–338. doi: 10.1146/annurev.iy.13.040195.001515. [DOI] [PubMed] [Google Scholar]
  30. Yamazaki K., Beauchamp G. K., Shen F. W., Bard J., Boyse E. A. Discrimination of odortypes determined by the major histocompatibility complex among outbred mice. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3735–3738. doi: 10.1073/pnas.91.9.3735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zahavi A. Mate selection-a selection for a handicap. J Theor Biol. 1975 Sep;53(1):205–214. doi: 10.1016/0022-5193(75)90111-3. [DOI] [PubMed] [Google Scholar]
  32. von Schantz T., Wittzell H., Göransson G., Grahn M., Persson K. MHC genotype and male ornamentation: genetic evidence for the Hamilton-Zuk model. Proc Biol Sci. 1996 Mar 22;263(1368):265–271. doi: 10.1098/rspb.1996.0041. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES