Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 Jun 22;265(1401):1097–1104. doi: 10.1098/rspb.1998.0404

Dynamics of a feline retrovirus (FeLV) in host populations with variable spatial structure.

E Fromont 1, D Pontier 1, M Langlais 1
PMCID: PMC1689178  PMID: 9684375

Abstract

The predictions of epidemic models are remarkably affected by the underlying assumptions concerning host population dynamics and the relation between host density and disease transmission. Furthermore, hypotheses underlying distinct models are rarely tested. Domestic cats (Felis catus) can be used to compare models and test their predictions, because cat populations show variable spatial structure that probably results in variability in the relation between density and disease transmission. Cat populations also exhibit various dynamics. We compare four epidemiological models of Feline Leukaemia Virus (FeLV). We use two different incidence terms, i.e. proportionate mixing and pseudo-mass action. Population dynamics are modelled as logistic or exponential growth. Compared with proportionate mixing, mass action incidence with logistic growth results in a threshold population size under which the virus cannot persist in the population. Exponential growth of host populations results in systems where FeLV persistence at a steady prevalence and depression of host population growth are biologically unlikely to occur. Predictions of our models account for presently available data on FeLV dynamics in various populations of cats. Thus, host population dynamics and spatial structure can be determinant parameters in parasite transmission, host population depression, and disease control.

Full Text

The Full Text of this article is available as a PDF (181.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. M., Jackson H. C., May R. M., Smith A. M. Population dynamics of fox rabies in Europe. Nature. 1981 Feb 26;289(5800):765–771. doi: 10.1038/289765a0. [DOI] [PubMed] [Google Scholar]
  2. Anderson R. M., May R. M. Population biology of infectious diseases: Part I. Nature. 1979 Aug 2;280(5721):361–367. doi: 10.1038/280361a0. [DOI] [PubMed] [Google Scholar]
  3. Fromont E., Artois M., Langlais M., Courchamp F., Pontier D. Modelling the feline leukemia virus (FeLV) in natural populations of cats (Felis catus). Theor Popul Biol. 1997 Aug;52(1):60–70. doi: 10.1006/tpbi.1997.1320. [DOI] [PubMed] [Google Scholar]
  4. Gulland F. M., Albon S. D., Pemberton J. M., Moorcroft P. R., Clutton-Brock T. H. Parasite-associated polymorphism in a cyclic ungulate population. Proc Biol Sci. 1993 Oct 22;254(1339):7–13. doi: 10.1098/rspb.1993.0119. [DOI] [PubMed] [Google Scholar]
  5. Hardy W. D., Jr, Hess P. W., MacEwen E. G., McClelland A. J., Zuckerman E. E., Essex M., Cotter S. M., Jarrett O. Biology of feline leukemia virus in the natural environment. Cancer Res. 1976 Feb;36(2 Pt 2):582–588. [PubMed] [Google Scholar]
  6. Ishida T., Kawai S., Fujiwara K. Detection of feline leukemia virus infection in Tokyo area by enzyme-linked immunosorbent assay (ELISA). Nihon Juigaku Zasshi. 1981 Dec;43(6):871–874. doi: 10.1292/jvms1939.43.871. [DOI] [PubMed] [Google Scholar]
  7. Lubkin S. R., Romatowski J., Zhu M., Kulesa P. M., White K. A. Evaluation of feline leukemia virus control measures. J Theor Biol. 1996 Jan 7;178(1):53–60. doi: 10.1006/jtbi.1996.0006. [DOI] [PubMed] [Google Scholar]
  8. Patronek G. J., Beck A. M., Glickman L. T. Dynamics of dog and cat populations in a community. J Am Vet Med Assoc. 1997 Mar 1;210(5):637–642. [PubMed] [Google Scholar]
  9. Pontier D., Fromont E., Courchamp F., Artois M., Yoccoz N. G. Retroviruses and sexual size dimorphism in domestic cats (Felis catus L.). Proc Biol Sci. 1998 Feb 7;265(1392):167–173. doi: 10.1098/rspb.1998.0278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Smith G. C., Harris S. Rabies in urban foxes (Vulpes vulpes) in Britain: the use of a spatial stochastic simulation model to examine the pattern of spread and evaluate the efficacy of different control régimes. Philos Trans R Soc Lond B Biol Sci. 1991 Dec 30;334(1271):459–479. doi: 10.1098/rstb.1991.0127. [DOI] [PubMed] [Google Scholar]
  11. Weijer K., Daams J. H. The presence of leukaemia (lymphosarcoma) and feline leukaemia virus (FeLv) in cats in The Netherlands. J Small Anim Pract. 1976 Oct;17(10):649–659. doi: 10.1111/j.1748-5827.1976.tb06925.x. [DOI] [PubMed] [Google Scholar]
  12. Yamaguchi N., Macdonald D. W., Passanisi W. C., Harbour D. A., Hopper C. D. Parasite prevalence in free-ranging farm cats, Felis silvestris catus. Epidemiol Infect. 1996 Apr;116(2):217–223. doi: 10.1017/s0950268800052468. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
9684375s01.pdf (107.8KB, pdf)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES