Abstract
The existence of nearshore and offshore populations of the bottlenose dolphin has been documented throughout its range. In several cases the two regional forms have been shown to be morphologically distinct, although there is considerable overlap for most characters. The populations off the eastern coast of North America have been the subject of a long-term programme of research on their distribution and movements. In this study, we compare mitochondrial and nuclear genetic markers between dolphins classified as either nearshore or offshore type. These putative populations were found to be distinct at both nuclear and mitochondrial genetic markers. Further, the level of variation among the nearshore dolphins was reduced compared with the offshore population. A broader geographical comparison suggests a shared lineage between offshore dolphins from the western North Atlantic and both offshore and nearshore dolphins from the eastern Atlantic. These results are consistent with local differentiation based on habitat or resource specialization in the western North Atlantic, and suggest differences in the character of the nearshore/offshore distinction in different parts of the world.
Full Text
The Full Text of this article is available as a PDF (195.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Excoffier L., Smouse P. E., Quattro J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992 Jun;131(2):479–491. doi: 10.1093/genetics/131.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoelzel A. R., Dahlheim M., Stern S. J. Low genetic variation among killer whales (Orcinus orca) in the eastern north Pacific and genetic differentiation between foraging specialists. J Hered. 1998 Mar-Apr;89(2):121–128. doi: 10.1093/jhered/89.2.121. [DOI] [PubMed] [Google Scholar]
- Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980 Dec;16(2):111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
- Orita M., Iwahana H., Kanazawa H., Hayashi K., Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2766–2770. doi: 10.1073/pnas.86.8.2766. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
- Slatkin M. A measure of population subdivision based on microsatellite allele frequencies. Genetics. 1995 Jan;139(1):457–462. doi: 10.1093/genetics/139.1.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
