Abstract
Skipping, a gait children display when they are about four- to five-years-old, is revealed to be more than a behavioural peculiarity. By means of metabolic and biomechanical measurements at several speeds, the relevance of skipping is shown to extend from links between bipedal and quadrupedal locomotion (namely galloping) to understanding why it could be a gait of choice in low-gravity conditions, and to some aspects of locomotion evolution (ground reaction forces of skipping seem to originate from pushing the walking gait to unnaturally high speeds). When the time-courses of mechanical energy and the horizontal ground reaction force are considered, a different locomotion paradigm emerges, enabling us to separate, among the bouncing gaits, the trot from the gallop (quadrupeds) and running from skipping (bipeds). The simultaneous use of pendulum-like and elastic mechanisms in skipping gaits, as shown by the energy curve analysis, helps us to understand the low cost of transport of galloping quadrupeds.
Full Text
The Full Text of this article is available as a PDF (297.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander R. M. A model of bipedal locomotion on compliant legs. Philos Trans R Soc Lond B Biol Sci. 1992 Oct 29;338(1284):189–198. doi: 10.1098/rstb.1992.0138. [DOI] [PubMed] [Google Scholar]
- Alexander R. M., Jayes A. S. Fourier analysis of forces exerted in walking and running. J Biomech. 1980;13(4):383–390. doi: 10.1016/0021-9290(80)90019-6. [DOI] [PubMed] [Google Scholar]
- Blickhan R. The spring-mass model for running and hopping. J Biomech. 1989;22(11-12):1217–1227. doi: 10.1016/0021-9290(89)90224-8. [DOI] [PubMed] [Google Scholar]
- Buchner H. H., Savelberg H. H., Schamhardt H. C., Barneveld A. Inertial properties of Dutch Warmblood horses. J Biomech. 1997 Jun;30(6):653–658. doi: 10.1016/s0021-9290(97)00005-5. [DOI] [PubMed] [Google Scholar]
- Cavagna G. A., Heglund N. C., Taylor C. R. Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am J Physiol. 1977 Nov;233(5):R243–R261. doi: 10.1152/ajpregu.1977.233.5.R243. [DOI] [PubMed] [Google Scholar]
- Cavagna G. A., Kaneko M. Mechanical work and efficiency in level walking and running. J Physiol. 1977 Jun;268(2):467–-81. doi: 10.1113/jphysiol.1977.sp011866. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cavagna G. A., Thys H., Zamboni A. The sources of external work in level walking and running. J Physiol. 1976 Nov;262(3):639–657. doi: 10.1113/jphysiol.1976.sp011613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cavagna G. A., Thys H., Zamboni A. The sources of external work in level walking and running. J Physiol. 1976 Nov;262(3):639–657. doi: 10.1113/jphysiol.1976.sp011613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEMPSTER W. T., GABEL W. C., FELTS W. J. The anthropometry of the manual work space for the seated subject. Am J Phys Anthropol. 1959 Dec;17:289–317. doi: 10.1002/ajpa.1330170405. [DOI] [PubMed] [Google Scholar]
- MARGARIA R., CAVAGNA G. A. HUMAN LOCOMOTION IN SUBGRAVITY. Aerosp Med. 1964 Dec;35:1140–1146. [PubMed] [Google Scholar]
- Minetti A. E., Ardigò L. P., Saibene F. Mechanical determinants of gradient walking energetics in man. J Physiol. 1993 Dec;472:725–735. doi: 10.1113/jphysiol.1993.sp019969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minetti A. E., Ardigò L. P., Saibene F. Mechanical determinants of the minimum energy cost of gradient running in humans. J Exp Biol. 1994 Oct;195:211–225. doi: 10.1242/jeb.195.1.211. [DOI] [PubMed] [Google Scholar]
- Nilsson J., Thorstensson A. Ground reaction forces at different speeds of human walking and running. Acta Physiol Scand. 1989 Jun;136(2):217–227. doi: 10.1111/j.1748-1716.1989.tb08655.x. [DOI] [PubMed] [Google Scholar]