Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 Aug 7;265(1404):1447–1452. doi: 10.1098/rspb.1998.0456

Widespread occurrence of the micro-organism Wolbachia in ants.

T Wenseleers 1, F Ito 1, S Van Borm 1, R Huybrechts 1, F Volckaert 1, J Billen 1
PMCID: PMC1689219  PMID: 9721689

Abstract

For more than 20 years, sex allocation in hymenopteran societies has been a major topic in insect sociobiology. A recurring idea was that relatedness asymmetrics arising from their haplodiploid sex determination system would lead to various parent-offspring conflicts over optimal reproduction. A possible weakness of existing theory is that only interests of nuclear genes are properly accounted for. Yet, a diversity of maternally transmitted elements manipulate the reproduction of their host in many solitary arthropod groups. The bacterium Wolbachia is a striking example of such a selfish cytoplasmic element, with effects ranging from reproductive incompatibility between host strains, induction of parthenogenesis and feminization of males. This paper reports on a first PCR-based Wolbachia screening in ants. Out of 50 Indo-Australian species, 50% screened positive for an A-group strain. One of these species also harboured a B-group strain in a double infection. Various factors that might explain the unusually high incidence of Wolbachia in ants are discussed. In general, Wolbachia may represent a widespread and previously unrecognized party active in the conflicts of interest within social insect colonies.

Full Text

The Full Text of this article is available as a PDF (153.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barr A. R. Cytoplasmic incompatibility in natural populations of a mosquito, Culex pipiens L. Nature. 1980 Jan 3;283(5742):71–72. doi: 10.1038/283071a0. [DOI] [PubMed] [Google Scholar]
  2. Bourtzis K., Nirgianaki A., Markakis G., Savakis C. Wolbachia infection and cytoplasmic incompatibility in Drosophila species. Genetics. 1996 Nov;144(3):1063–1073. doi: 10.1093/genetics/144.3.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Breeuwer J. A., Jacobs G. Wolbachia: intracellular manipulators of mite reproduction. Exp Appl Acarol. 1996 Aug;20(8):421–434. doi: 10.1007/BF00053306. [DOI] [PubMed] [Google Scholar]
  4. Breeuwer J. A., Stouthamer R., Barns S. M., Pelletier D. A., Weisburg W. G., Werren J. H. Phylogeny of cytoplasmic incompatibility micro-organisms in the parasitoid wasp genus Nasonia (Hymenoptera: Pteromalidae) based on 16S ribosomal DNA sequences. Insect Mol Biol. 1992;1(1):25–36. doi: 10.1111/j.1365-2583.1993.tb00074.x. [DOI] [PubMed] [Google Scholar]
  5. Breeuwer J. A., Werren J. H. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature. 1990 Aug 9;346(6284):558–560. doi: 10.1038/346558a0. [DOI] [PubMed] [Google Scholar]
  6. Hamilton W. D. The genetical evolution of social behaviour. I. J Theor Biol. 1964 Jul;7(1):1–16. doi: 10.1016/0022-5193(64)90038-4. [DOI] [PubMed] [Google Scholar]
  7. Hamilton W. D. The genetical evolution of social behaviour. II. J Theor Biol. 1964 Jul;7(1):17–52. doi: 10.1016/0022-5193(64)90039-6. [DOI] [PubMed] [Google Scholar]
  8. Holden P. R., Brookfield J. F., Jones P. Cloning and characterization of an ftsZ homologue from a bacterial symbiont of Drosophila melanogaster. Mol Gen Genet. 1993 Aug;240(2):213–220. doi: 10.1007/BF00277059. [DOI] [PubMed] [Google Scholar]
  9. Hoshizaki S., Shimada T. PCR-based detection of Wolbachia, cytoplasmic incompatibility microorganisms, infected in natural populations of Laodelphax striatellus (Homoptera: Delphacidae) in central Japan: has the distribution of Wolbachia spread recently? Insect Mol Biol. 1995 Nov;4(4):237–243. doi: 10.1111/j.1365-2583.1995.tb00029.x. [DOI] [PubMed] [Google Scholar]
  10. O'Neill S. L., Karr T. L. Bidirectional incompatibility between conspecific populations of Drosophila simulans. Nature. 1990 Nov 8;348(6297):178–180. doi: 10.1038/348178a0. [DOI] [PubMed] [Google Scholar]
  11. doi: 10.1098/rspb.1997.0010. [DOI] [PMC free article] [Google Scholar]
  12. Rousset F., Bouchon D., Pintureau B., Juchault P., Solignac M. Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc Biol Sci. 1992 Nov 23;250(1328):91–98. doi: 10.1098/rspb.1992.0135. [DOI] [PubMed] [Google Scholar]
  13. Ryan S. L., Saul G. B., 2nd Post-fertilization effect of incompatibility factors in Mormoniella. Mol Gen Genet. 1968;103(1):29–36. doi: 10.1007/BF00271154. [DOI] [PubMed] [Google Scholar]
  14. Schilthuizen M., Stouthamer R. Horizontal transmission of parthenogenesis-inducing microbes in Trichogramma wasps. Proc Biol Sci. 1997 Mar 22;264(1380):361–366. doi: 10.1098/rspb.1997.0052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sironi M., Bandi C., Sacchi L., Di Sacco B., Damiani G., Genchi C. Molecular evidence for a close relative of the arthropod endosymbiont Wolbachia in a filarial worm. Mol Biochem Parasitol. 1995 Nov;74(2):223–227. doi: 10.1016/0166-6851(95)02494-8. [DOI] [PubMed] [Google Scholar]
  16. Skinner S. W. Maternally Inherited Sex Ratio in the Parasitoid Wasp Nasonia vitripennis. Science. 1982 Feb 26;215(4536):1133–1134. doi: 10.1126/science.215.4536.1133. [DOI] [PubMed] [Google Scholar]
  17. Stouthamer R., Breeuwert J. A., Luck R. F., Werren J. H. Molecular identification of microorganisms associated with parthenogenesis. Nature. 1993 Jan 7;361(6407):66–68. doi: 10.1038/361066a0. [DOI] [PubMed] [Google Scholar]
  18. Trivers R. L., Hare H. Haploidploidy and the evolution of the social insect. Science. 1976 Jan 23;191(4224):249–263. doi: 10.1126/science.1108197. [DOI] [PubMed] [Google Scholar]
  19. Tsagkarakou A., Guillemaud T., Rousset F., Navajas M. Molecular identification of a Wolbachia endosymbiont in a Tetranychus urticae strain (Acari: Tetranychidae). Insect Mol Biol. 1996 Aug;5(3):217–221. doi: 10.1111/j.1365-2583.1996.tb00057.x. [DOI] [PubMed] [Google Scholar]
  20. Turelli M., Hoffmann A. A. Cytoplasmic incompatibility in Drosophila simulans: dynamics and parameter estimates from natural populations. Genetics. 1995 Aug;140(4):1319–1338. doi: 10.1093/genetics/140.4.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Turelli M., Hoffmann A. A. Rapid spread of an inherited incompatibility factor in California Drosophila. Nature. 1991 Oct 3;353(6343):440–442. doi: 10.1038/353440a0. [DOI] [PubMed] [Google Scholar]
  22. Werren J. H. Biology of Wolbachia. Annu Rev Entomol. 1997;42:587–609. doi: 10.1146/annurev.ento.42.1.587. [DOI] [PubMed] [Google Scholar]
  23. Werren J. H., Zhang W., Guo L. R. Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc Biol Sci. 1995 Jul 22;261(1360):55–63. doi: 10.1098/rspb.1995.0117. [DOI] [PubMed] [Google Scholar]
  24. Yen J. H., Barr A. R. New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature. 1971 Aug 27;232(5313):657–658. doi: 10.1038/232657a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES