Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 Aug 22;265(1405):1573–1581. doi: 10.1098/rspb.1998.0474

Stereoscopic and contrast-defined motion in human vision.

A T Smith 1, N E Scott-Samuel 1
PMCID: PMC1689333  PMID: 9744109

Abstract

There is considerable evidence for the existence of a specialized mechanism in human vision for detecting moving contrast modulations and some evidence for a mechanism for detecting moving stereoscopic depth modulations. It is unclear whether a single second-order motion mechanism detects both types of stimulus or whether they are detected separately. We show that sensitivity to stereo-defined motion resembles that to contrast-defined motion in two important ways. First, when a missing-fundamental disparity waveform is moved in steps of 0.25 cycles, its perceived direction tends to reverse. This is a property of both luminance-defined and contrast-defined motion and is consistent with independent detection of motion at different spatial scales. Second, thresholds for detecting the direction of a smoothly drifting sinusoidal disparity modulation are much higher than those for detecting its orientation. This is a property of contrast-modulated gratings but not luminance-modulated gratings, for which the two thresholds are normally identical. The results suggest that stereo-defined and contrast-defined motion stimuli are detected either by a common mechanism or by separate mechanisms sharing a common principle of operation.

Full Text

The Full Text of this article is available as a PDF (334.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelson E. H., Bergen J. R. Spatiotemporal energy models for the perception of motion. J Opt Soc Am A. 1985 Feb;2(2):284–299. doi: 10.1364/josaa.2.000284. [DOI] [PubMed] [Google Scholar]
  2. Anstis S. M. The perception of apparent movement. Philos Trans R Soc Lond B Biol Sci. 1980 Jul 8;290(1038):153–168. doi: 10.1098/rstb.1980.0088. [DOI] [PubMed] [Google Scholar]
  3. Bowd C., Rose D., Phinney R. E., Patterson R. Enduring stereoscopic motion aftereffects induced by prolonged adaptation. Vision Res. 1996 Nov;36(22):3655–3660. doi: 10.1016/0042-6989(96)00093-4. [DOI] [PubMed] [Google Scholar]
  4. Braddick O. J. Low-level and high-level processes in apparent motion. Philos Trans R Soc Lond B Biol Sci. 1980 Jul 8;290(1038):137–151. doi: 10.1098/rstb.1980.0087. [DOI] [PubMed] [Google Scholar]
  5. Cavanagh P. Short-range vs long-range motion: not a valid distinction. Spat Vis. 1991;5(4):303–309. doi: 10.1163/156856891x00065. [DOI] [PubMed] [Google Scholar]
  6. Chang J. J. New phenomena linking depth and luminance in stereoscopic motion. Vision Res. 1990;30(1):137–147. doi: 10.1016/0042-6989(90)90133-6. [DOI] [PubMed] [Google Scholar]
  7. Chubb C., Sperling G. Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception. J Opt Soc Am A. 1988 Nov;5(11):1986–2007. doi: 10.1364/josaa.5.001986. [DOI] [PubMed] [Google Scholar]
  8. Cropper S. J., Derrington A. M. Motion of chromatic stimuli: first-order or second-order? Vision Res. 1994 Jan;34(1):49–58. doi: 10.1016/0042-6989(94)90256-9. [DOI] [PubMed] [Google Scholar]
  9. Derrington A. M., Badcock D. R. Separate detectors for simple and complex grating patterns? Vision Res. 1985;25(12):1869–1878. doi: 10.1016/0042-6989(85)90010-0. [DOI] [PubMed] [Google Scholar]
  10. Derrington A. M., Henning G. B. Detecting and discriminating the direction of motion of luminance and colour gratings. Vision Res. 1993 Mar-Apr;33(5-6):799–811. doi: 10.1016/0042-6989(93)90199-7. [DOI] [PubMed] [Google Scholar]
  11. Dobkins K. R., Albright T. D. What happens if it changes color when it moves?: psychophysical experiments on the nature of chromatic input to motion detectors. Vision Res. 1993 May;33(8):1019–1036. doi: 10.1016/0042-6989(93)90238-r. [DOI] [PubMed] [Google Scholar]
  12. Georgeson M. A., Shackleton T. M. Monocular motion sensing, binocular motion perception. Vision Res. 1989;29(11):1511–1523. doi: 10.1016/0042-6989(89)90135-1. [DOI] [PubMed] [Google Scholar]
  13. Glennerster A., Parker A. J. Computing stereo channels from masking data. Vision Res. 1997 Aug;37(15):2143–2152. doi: 10.1016/s0042-6989(97)00036-9. [DOI] [PubMed] [Google Scholar]
  14. Green M. Contrast detection and direction discrimination of drifting gratings. Vision Res. 1983;23(3):281–289. doi: 10.1016/0042-6989(83)90117-7. [DOI] [PubMed] [Google Scholar]
  15. Hammett S. T., Ledgeway T., Smith A. T. Transparent motion from feature- and luminance-based processes. Vision Res. 1993 May;33(8):1119–1122. doi: 10.1016/0042-6989(93)90245-r. [DOI] [PubMed] [Google Scholar]
  16. Harris J. M., Watamaniuk S. N. Poor speed discrimination suggests that there is no specialized speed mechanism for cyclopean motion. Vision Res. 1996 Jul;36(14):2149–2157. doi: 10.1016/0042-6989(95)00278-2. [DOI] [PubMed] [Google Scholar]
  17. Kelly D. H. Motion and vision. II. Stabilized spatio-temporal threshold surface. J Opt Soc Am. 1979 Oct;69(10):1340–1349. doi: 10.1364/josa.69.001340. [DOI] [PubMed] [Google Scholar]
  18. Lankheet M. J., Lennie P. Spatio-temporal requirements for binocular correlation in stereopsis. Vision Res. 1996 Feb;36(4):527–538. doi: 10.1016/0042-6989(95)00142-5. [DOI] [PubMed] [Google Scholar]
  19. Ledgeway T., Smith A. T. Evidence for separate motion-detecting mechanisms for first- and second-order motion in human vision. Vision Res. 1994 Oct;34(20):2727–2740. doi: 10.1016/0042-6989(94)90229-1. [DOI] [PubMed] [Google Scholar]
  20. Lindsey D. T., Teller D. Y. Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings. Vision Res. 1990;30(11):1751–1761. doi: 10.1016/0042-6989(90)90157-g. [DOI] [PubMed] [Google Scholar]
  21. Lu Z. L., Sperling G. The functional architecture of human visual motion perception. Vision Res. 1995 Oct;35(19):2697–2722. doi: 10.1016/0042-6989(95)00025-u. [DOI] [PubMed] [Google Scholar]
  22. Mather G., West S. Evidence for second-order motion detectors. Vision Res. 1993 May;33(8):1109–1112. doi: 10.1016/0042-6989(93)90243-p. [DOI] [PubMed] [Google Scholar]
  23. Mullen K. T., Boulton J. C. Absence of smooth motion perception in color vision. Vision Res. 1992 Mar;32(3):483–488. doi: 10.1016/0042-6989(92)90240-j. [DOI] [PubMed] [Google Scholar]
  24. Nishida S., Ledgeway T., Edwards M. Dual multiple-scale processing for motion in the human visual system. Vision Res. 1997 Oct;37(19):2685–2698. doi: 10.1016/s0042-6989(97)00092-8. [DOI] [PubMed] [Google Scholar]
  25. Nishida S. Spatiotemporal properties of motion perception for random-check contrast modulations. Vision Res. 1993 Mar-Apr;33(5-6):633–645. doi: 10.1016/0042-6989(93)90184-x. [DOI] [PubMed] [Google Scholar]
  26. Patterson R., Bowd C., Phinney R., Fox R., Lehmkuhle S. Disparity tuning of the stereoscopic (cyclopean) motion aftereffect. Vision Res. 1996 Apr;36(7):975–983. doi: 10.1016/0042-6989(95)00169-7. [DOI] [PubMed] [Google Scholar]
  27. Patterson R., Bowd C., Phinney R., Pohndorf R., Barton-Howard W. J., Angilletta M. Properties of the stereoscopic (cyclopean) motion aftereffect. Vision Res. 1994 May;34(9):1139–1147. doi: 10.1016/0042-6989(94)90296-8. [DOI] [PubMed] [Google Scholar]
  28. Patterson R., Donnelly M., Phinney R. E., Nawrot M., Whiting A., Eyle T. Speed discrimination of stereoscopic (cyclopean) motion. Vision Res. 1997 Apr;37(7):871–878. doi: 10.1016/s0042-6989(96)00226-x. [DOI] [PubMed] [Google Scholar]
  29. Patterson R., Ricker C., McGary J., Rose D. Properties of cyclopean motion perception. Vision Res. 1992 Jan;32(1):149–156. doi: 10.1016/0042-6989(92)90122-y. [DOI] [PubMed] [Google Scholar]
  30. Portfors C. V., Regan D. Just-noticeable difference in the speed of cyclopean motion in depth and the speed of cyclopean motion within a frontoparallel plane. J Exp Psychol Hum Percept Perform. 1997 Aug;23(4):1074–1086. doi: 10.1037//0096-1523.23.4.1074. [DOI] [PubMed] [Google Scholar]
  31. Smith A. T., Ledgeway T. Sensitivity to second-order motion as a function of temporal frequency and eccentricity. Vision Res. 1998 Feb;38(3):403–410. doi: 10.1016/s0042-6989(97)00134-x. [DOI] [PubMed] [Google Scholar]
  32. Smith A. T., Ledgeway T. Separate detection of moving luminance and contrast modulations: fact or artifact? Vision Res. 1997 Jan;37(1):45–62. doi: 10.1016/s0042-6989(96)00147-2. [DOI] [PubMed] [Google Scholar]
  33. Watson A. B., Thompson P. G., Murphy B. J., Nachmias J. Summation and discrimination of gratings moving in opposite directions. Vision Res. 1980;20(4):341–347. doi: 10.1016/0042-6989(80)90020-6. [DOI] [PubMed] [Google Scholar]
  34. Werkhoven P., Sperling G., Chubb C. The dimensionality of texture-defined motion: a single channel theory. Vision Res. 1993 Mar;33(4):463–485. doi: 10.1016/0042-6989(93)90253-s. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES