Abstract
There is considerable evidence for the existence of a specialized mechanism in human vision for detecting moving contrast modulations and some evidence for a mechanism for detecting moving stereoscopic depth modulations. It is unclear whether a single second-order motion mechanism detects both types of stimulus or whether they are detected separately. We show that sensitivity to stereo-defined motion resembles that to contrast-defined motion in two important ways. First, when a missing-fundamental disparity waveform is moved in steps of 0.25 cycles, its perceived direction tends to reverse. This is a property of both luminance-defined and contrast-defined motion and is consistent with independent detection of motion at different spatial scales. Second, thresholds for detecting the direction of a smoothly drifting sinusoidal disparity modulation are much higher than those for detecting its orientation. This is a property of contrast-modulated gratings but not luminance-modulated gratings, for which the two thresholds are normally identical. The results suggest that stereo-defined and contrast-defined motion stimuli are detected either by a common mechanism or by separate mechanisms sharing a common principle of operation.
Full Text
The Full Text of this article is available as a PDF (334.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adelson E. H., Bergen J. R. Spatiotemporal energy models for the perception of motion. J Opt Soc Am A. 1985 Feb;2(2):284–299. doi: 10.1364/josaa.2.000284. [DOI] [PubMed] [Google Scholar]
- Anstis S. M. The perception of apparent movement. Philos Trans R Soc Lond B Biol Sci. 1980 Jul 8;290(1038):153–168. doi: 10.1098/rstb.1980.0088. [DOI] [PubMed] [Google Scholar]
- Bowd C., Rose D., Phinney R. E., Patterson R. Enduring stereoscopic motion aftereffects induced by prolonged adaptation. Vision Res. 1996 Nov;36(22):3655–3660. doi: 10.1016/0042-6989(96)00093-4. [DOI] [PubMed] [Google Scholar]
- Braddick O. J. Low-level and high-level processes in apparent motion. Philos Trans R Soc Lond B Biol Sci. 1980 Jul 8;290(1038):137–151. doi: 10.1098/rstb.1980.0087. [DOI] [PubMed] [Google Scholar]
- Cavanagh P. Short-range vs long-range motion: not a valid distinction. Spat Vis. 1991;5(4):303–309. doi: 10.1163/156856891x00065. [DOI] [PubMed] [Google Scholar]
- Chang J. J. New phenomena linking depth and luminance in stereoscopic motion. Vision Res. 1990;30(1):137–147. doi: 10.1016/0042-6989(90)90133-6. [DOI] [PubMed] [Google Scholar]
- Chubb C., Sperling G. Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception. J Opt Soc Am A. 1988 Nov;5(11):1986–2007. doi: 10.1364/josaa.5.001986. [DOI] [PubMed] [Google Scholar]
- Cropper S. J., Derrington A. M. Motion of chromatic stimuli: first-order or second-order? Vision Res. 1994 Jan;34(1):49–58. doi: 10.1016/0042-6989(94)90256-9. [DOI] [PubMed] [Google Scholar]
- Derrington A. M., Badcock D. R. Separate detectors for simple and complex grating patterns? Vision Res. 1985;25(12):1869–1878. doi: 10.1016/0042-6989(85)90010-0. [DOI] [PubMed] [Google Scholar]
- Derrington A. M., Henning G. B. Detecting and discriminating the direction of motion of luminance and colour gratings. Vision Res. 1993 Mar-Apr;33(5-6):799–811. doi: 10.1016/0042-6989(93)90199-7. [DOI] [PubMed] [Google Scholar]
- Dobkins K. R., Albright T. D. What happens if it changes color when it moves?: psychophysical experiments on the nature of chromatic input to motion detectors. Vision Res. 1993 May;33(8):1019–1036. doi: 10.1016/0042-6989(93)90238-r. [DOI] [PubMed] [Google Scholar]
- Georgeson M. A., Shackleton T. M. Monocular motion sensing, binocular motion perception. Vision Res. 1989;29(11):1511–1523. doi: 10.1016/0042-6989(89)90135-1. [DOI] [PubMed] [Google Scholar]
- Glennerster A., Parker A. J. Computing stereo channels from masking data. Vision Res. 1997 Aug;37(15):2143–2152. doi: 10.1016/s0042-6989(97)00036-9. [DOI] [PubMed] [Google Scholar]
- Green M. Contrast detection and direction discrimination of drifting gratings. Vision Res. 1983;23(3):281–289. doi: 10.1016/0042-6989(83)90117-7. [DOI] [PubMed] [Google Scholar]
- Hammett S. T., Ledgeway T., Smith A. T. Transparent motion from feature- and luminance-based processes. Vision Res. 1993 May;33(8):1119–1122. doi: 10.1016/0042-6989(93)90245-r. [DOI] [PubMed] [Google Scholar]
- Harris J. M., Watamaniuk S. N. Poor speed discrimination suggests that there is no specialized speed mechanism for cyclopean motion. Vision Res. 1996 Jul;36(14):2149–2157. doi: 10.1016/0042-6989(95)00278-2. [DOI] [PubMed] [Google Scholar]
- Kelly D. H. Motion and vision. II. Stabilized spatio-temporal threshold surface. J Opt Soc Am. 1979 Oct;69(10):1340–1349. doi: 10.1364/josa.69.001340. [DOI] [PubMed] [Google Scholar]
- Lankheet M. J., Lennie P. Spatio-temporal requirements for binocular correlation in stereopsis. Vision Res. 1996 Feb;36(4):527–538. doi: 10.1016/0042-6989(95)00142-5. [DOI] [PubMed] [Google Scholar]
- Ledgeway T., Smith A. T. Evidence for separate motion-detecting mechanisms for first- and second-order motion in human vision. Vision Res. 1994 Oct;34(20):2727–2740. doi: 10.1016/0042-6989(94)90229-1. [DOI] [PubMed] [Google Scholar]
- Lindsey D. T., Teller D. Y. Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings. Vision Res. 1990;30(11):1751–1761. doi: 10.1016/0042-6989(90)90157-g. [DOI] [PubMed] [Google Scholar]
- Lu Z. L., Sperling G. The functional architecture of human visual motion perception. Vision Res. 1995 Oct;35(19):2697–2722. doi: 10.1016/0042-6989(95)00025-u. [DOI] [PubMed] [Google Scholar]
- Mather G., West S. Evidence for second-order motion detectors. Vision Res. 1993 May;33(8):1109–1112. doi: 10.1016/0042-6989(93)90243-p. [DOI] [PubMed] [Google Scholar]
- Mullen K. T., Boulton J. C. Absence of smooth motion perception in color vision. Vision Res. 1992 Mar;32(3):483–488. doi: 10.1016/0042-6989(92)90240-j. [DOI] [PubMed] [Google Scholar]
- Nishida S., Ledgeway T., Edwards M. Dual multiple-scale processing for motion in the human visual system. Vision Res. 1997 Oct;37(19):2685–2698. doi: 10.1016/s0042-6989(97)00092-8. [DOI] [PubMed] [Google Scholar]
- Nishida S. Spatiotemporal properties of motion perception for random-check contrast modulations. Vision Res. 1993 Mar-Apr;33(5-6):633–645. doi: 10.1016/0042-6989(93)90184-x. [DOI] [PubMed] [Google Scholar]
- Patterson R., Bowd C., Phinney R., Fox R., Lehmkuhle S. Disparity tuning of the stereoscopic (cyclopean) motion aftereffect. Vision Res. 1996 Apr;36(7):975–983. doi: 10.1016/0042-6989(95)00169-7. [DOI] [PubMed] [Google Scholar]
- Patterson R., Bowd C., Phinney R., Pohndorf R., Barton-Howard W. J., Angilletta M. Properties of the stereoscopic (cyclopean) motion aftereffect. Vision Res. 1994 May;34(9):1139–1147. doi: 10.1016/0042-6989(94)90296-8. [DOI] [PubMed] [Google Scholar]
- Patterson R., Donnelly M., Phinney R. E., Nawrot M., Whiting A., Eyle T. Speed discrimination of stereoscopic (cyclopean) motion. Vision Res. 1997 Apr;37(7):871–878. doi: 10.1016/s0042-6989(96)00226-x. [DOI] [PubMed] [Google Scholar]
- Patterson R., Ricker C., McGary J., Rose D. Properties of cyclopean motion perception. Vision Res. 1992 Jan;32(1):149–156. doi: 10.1016/0042-6989(92)90122-y. [DOI] [PubMed] [Google Scholar]
- Portfors C. V., Regan D. Just-noticeable difference in the speed of cyclopean motion in depth and the speed of cyclopean motion within a frontoparallel plane. J Exp Psychol Hum Percept Perform. 1997 Aug;23(4):1074–1086. doi: 10.1037//0096-1523.23.4.1074. [DOI] [PubMed] [Google Scholar]
- Smith A. T., Ledgeway T. Sensitivity to second-order motion as a function of temporal frequency and eccentricity. Vision Res. 1998 Feb;38(3):403–410. doi: 10.1016/s0042-6989(97)00134-x. [DOI] [PubMed] [Google Scholar]
- Smith A. T., Ledgeway T. Separate detection of moving luminance and contrast modulations: fact or artifact? Vision Res. 1997 Jan;37(1):45–62. doi: 10.1016/s0042-6989(96)00147-2. [DOI] [PubMed] [Google Scholar]
- Watson A. B., Thompson P. G., Murphy B. J., Nachmias J. Summation and discrimination of gratings moving in opposite directions. Vision Res. 1980;20(4):341–347. doi: 10.1016/0042-6989(80)90020-6. [DOI] [PubMed] [Google Scholar]
- Werkhoven P., Sperling G., Chubb C. The dimensionality of texture-defined motion: a single channel theory. Vision Res. 1993 Mar;33(4):463–485. doi: 10.1016/0042-6989(93)90253-s. [DOI] [PubMed] [Google Scholar]