Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 Sep 7;265(1406):1605–1613. doi: 10.1098/rspb.1998.0478

Multiple groups of orientation-selective visual mechanisms underlying rapid orientated-line detection.

D H Foster 1, S Westland 1
PMCID: PMC1689336  PMID: 9753784

Abstract

Visual search for an edge or line element differing in orientation from a background of other edge or line elements can be performed rapidly and effortlessly. In this study, based on psychophysical measurements with ten human observers, threshold values of the angle between a target and background line elements were obtained as functions of background-element orientation, in brief masked displays. A repeated-loess analysis of the threshold functions suggested the existence of several groups of orientation-selective mechanisms contributing to rapid orientated-line detection; specifically, coarse, intermediate and fine mechanisms with preferred orientations spaced at angles of approximately 90 degrees, 35 degrees, and 10 degrees-25 degrees, respectively. The preferred orientations of coarse and some intermediate mechanisms coincided with the vertical or horizontal of the frontoparallel plane, but the preferred orientations of fine mechanisms varied randomly from observer to observer, possibly reflecting individual variations in neuronal sampling characteristics.

Full Text

The Full Text of this article is available as a PDF (220.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahissar M., Hochstein S. Task difficulty and the specificity of perceptual learning. Nature. 1997 May 22;387(6631):401–406. doi: 10.1038/387401a0. [DOI] [PubMed] [Google Scholar]
  2. Andrews D. P. Perception of contour orientation in the central fovea. I: short lines. Vision Res. 1967 Nov;7(11):975–997. doi: 10.1016/0042-6989(67)90014-4. [DOI] [PubMed] [Google Scholar]
  3. Appelle S. Perception and discrimination as a function of stimulus orientation: the "oblique effect" in man and animals. Psychol Bull. 1972 Oct;78(4):266–278. doi: 10.1037/h0033117. [DOI] [PubMed] [Google Scholar]
  4. BARLOW H. B. Increment thresholds at low intensities considered as signal/noise discriminations. J Physiol. 1957 May 23;136(3):469–488. doi: 10.1113/jphysiol.1957.sp005774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baddeley R. J., Hancock P. J. A statistical analysis of natural images matches psychophysically derived orientation tuning curves. Proc Biol Sci. 1991 Dec 23;246(1317):219–223. doi: 10.1098/rspb.1991.0147. [DOI] [PubMed] [Google Scholar]
  6. Bergen J. R., Julesz B. Parallel versus serial processing in rapid pattern discrimination. Nature. 1983 Jun 23;303(5919):696–698. doi: 10.1038/303696a0. [DOI] [PubMed] [Google Scholar]
  7. Das A., Gilbert C. D. Distortions of visuotopic map match orientation singularities in primary visual cortex. Nature. 1997 Jun 5;387(6633):594–598. doi: 10.1038/42461. [DOI] [PubMed] [Google Scholar]
  8. De Valois R. L., Yund E. W., Hepler N. The orientation and direction selectivity of cells in macaque visual cortex. Vision Res. 1982;22(5):531–544. doi: 10.1016/0042-6989(82)90112-2. [DOI] [PubMed] [Google Scholar]
  9. Essock E. A. The oblique effect of stimulus identification considered with respect to two classes of oblique effects. Perception. 1980;9(1):37–46. doi: 10.1068/p090037. [DOI] [PubMed] [Google Scholar]
  10. Foster D. H., Ward P. A. Asymmetries in oriented-line detection indicate two orthogonal filters in early vision. Proc Biol Sci. 1991 Jan 22;243(1306):75–81. doi: 10.1098/rspb.1991.0013. [DOI] [PubMed] [Google Scholar]
  11. Heeley D. W., Buchanan-Smith H. M., Cromwell J. A., Wright J. S. The oblique effect in orientation acuity. Vision Res. 1997 Jan;37(2):235–242. doi: 10.1016/s0042-6989(96)00097-1. [DOI] [PubMed] [Google Scholar]
  12. Henry G. H., Michalski A., Wimborne B. M., McCart R. J. The nature and origin of orientation specificity in neurons of the visual pathways. Prog Neurobiol. 1994 Jul-Aug;43(4-5):381–437. doi: 10.1016/0301-0082(94)90061-2. [DOI] [PubMed] [Google Scholar]
  13. Hirsch J., Hylton R. Limits of spatial-frequency discrimination as evidence of neural interpolation. J Opt Soc Am. 1982 Oct;72(10):1367–1374. doi: 10.1364/josa.72.001367. [DOI] [PubMed] [Google Scholar]
  14. Javadnia A., Ruddock K. H. The limits of parallel processing in the visual discrimination of orientation and magnification. Spat Vis. 1988;3(2):97–114. doi: 10.1163/156856888x00069. [DOI] [PubMed] [Google Scholar]
  15. Julesz B., Schumer R. A. Early visual perception. Annu Rev Psychol. 1981;32:575–627. doi: 10.1146/annurev.ps.32.020181.003043. [DOI] [PubMed] [Google Scholar]
  16. Karni A., Sagi D. Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4966–4970. doi: 10.1073/pnas.88.11.4966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mansfield R. J. Neural basis of orientation perception in primate vision. Science. 1974 Dec 20;186(4169):1133–1135. doi: 10.1126/science.186.4169.1133. [DOI] [PubMed] [Google Scholar]
  18. Marendaz C., Stivalet P., Barraclough L., Walkowiac P. Effect of gravitational cues on visual search for orientation. J Exp Psychol Hum Percept Perform. 1993 Dec;19(6):1266–1277. doi: 10.1037//0096-1523.19.6.1266. [DOI] [PubMed] [Google Scholar]
  19. Meigen T., Lagreze W. D., Bach M. Asymmetries in preattentive line detection. Vision Res. 1994 Dec;34(23):3103–3109. doi: 10.1016/0042-6989(94)90076-0. [DOI] [PubMed] [Google Scholar]
  20. Nothdurft H. C. Texture segmentation and pop-out from orientation contrast. Vision Res. 1991;31(6):1073–1078. doi: 10.1016/0042-6989(91)90211-m. [DOI] [PubMed] [Google Scholar]
  21. Orban G. A., Vandenbussche E., Vogels R. Human orientation discrimination tested with long stimuli. Vision Res. 1984;24(2):121–128. doi: 10.1016/0042-6989(84)90097-x. [DOI] [PubMed] [Google Scholar]
  22. Regan D., Beverley K. I. Postadaptation orientation discrimination. J Opt Soc Am A. 1985 Feb;2(2):147–155. doi: 10.1364/josaa.2.000147. [DOI] [PubMed] [Google Scholar]
  23. Regan D., Price P. Periodicity in orientation discrimination and the unconfounding of visual information. Vision Res. 1986;26(8):1299–1302. doi: 10.1016/0042-6989(86)90111-2. [DOI] [PubMed] [Google Scholar]
  24. Ringach D. L., Hawken M. J., Shapley R. Dynamics of orientation tuning in macaque primary visual cortex. Nature. 1997 May 15;387(6630):281–284. doi: 10.1038/387281a0. [DOI] [PubMed] [Google Scholar]
  25. Rubenstein B. S., Sagi D. Spatial variability as a limiting factor in texture-discrimination tasks: implications for performance asymmetries. J Opt Soc Am A. 1990 Sep;7(9):1632–1643. doi: 10.1364/josaa.7.001632. [DOI] [PubMed] [Google Scholar]
  26. Sagi D., Julesz B. "Where" and "what" in vision. Science. 1985 Jun 7;228(4704):1217–1219. doi: 10.1126/science.4001937. [DOI] [PubMed] [Google Scholar]
  27. Sagi D., Julesz B. Short-range limitation on detection of feature differences. Spat Vis. 1987;2(1):39–49. doi: 10.1163/156856887x00042. [DOI] [PubMed] [Google Scholar]
  28. Schiller P. H., Finlay B. L., Volman S. F. Quantitative studies of single-cell properties in monkey striate cortex. II. Orientation specificity and ocular dominance. J Neurophysiol. 1976 Nov;39(6):1320–1333. doi: 10.1152/jn.1976.39.6.1320. [DOI] [PubMed] [Google Scholar]
  29. Schoups A. A., Orban G. A. Interocular transfer in perceptual learning of a pop-out discrimination task. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7358–7362. doi: 10.1073/pnas.93.14.7358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stivalet P., Marendaz C., Barraclough L., Mourareau C. Effect of gravito-inertial cues on the coding of orientation in pre-attentive vision. J Vestib Res. 1995 Mar-Apr;5(2):125–135. [PubMed] [Google Scholar]
  31. Treisman A. M., Gelade G. A feature-integration theory of attention. Cogn Psychol. 1980 Jan;12(1):97–136. doi: 10.1016/0010-0285(80)90005-5. [DOI] [PubMed] [Google Scholar]
  32. Treisman A., Gormican S. Feature analysis in early vision: evidence from search asymmetries. Psychol Rev. 1988 Jan;95(1):15–48. doi: 10.1037/0033-295x.95.1.15. [DOI] [PubMed] [Google Scholar]
  33. Treisman A., Souther J. Search asymmetry: a diagnostic for preattentive processing of separable features. J Exp Psychol Gen. 1985 Sep;114(3):285–310. doi: 10.1037//0096-3445.114.3.285. [DOI] [PubMed] [Google Scholar]
  34. Vogels R., Orban G. A. How well do response changes of striate neurons signal differences in orientation: a study in the discriminating monkey. J Neurosci. 1990 Nov;10(11):3543–3558. doi: 10.1523/JNEUROSCI.10-11-03543.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Watt R. J. Scanning from coarse to fine spatial scales in the human visual system after the onset of a stimulus. J Opt Soc Am A. 1987 Oct;4(10):2006–2021. doi: 10.1364/josaa.4.002006. [DOI] [PubMed] [Google Scholar]
  36. Westheimer G. Line-separation discrimination curve in the human fovea: smooth or segmented? J Opt Soc Am A. 1984 Jun;1(6):683–684. doi: 10.1364/josaa.1.000683. [DOI] [PubMed] [Google Scholar]
  37. Westheimer G., McKee S. P. Spatial configurations for visual hyperacuity. Vision Res. 1977;17(8):941–947. doi: 10.1016/0042-6989(77)90069-4. [DOI] [PubMed] [Google Scholar]
  38. Westheimer G. Simultaneous orientation contrast for lines in the human fovea. Vision Res. 1990;30(11):1913–1921. doi: 10.1016/0042-6989(90)90167-j. [DOI] [PubMed] [Google Scholar]
  39. Westland S., Foster D. H. Optimized model of oriented-line-target detection using vertical and horizontal filters. J Opt Soc Am A Opt Image Sci Vis. 1995 Aug;12(8):1617–1622. doi: 10.1364/josaa.12.001617. [DOI] [PubMed] [Google Scholar]
  40. Wolfe J. M. "Effortless" texture segmentation and "parallel" visual search are not the same thing. Vision Res. 1992 Apr;32(4):757–763. doi: 10.1016/0042-6989(92)90190-t. [DOI] [PubMed] [Google Scholar]
  41. Wolfe J. M., Friedman-Hill S. R., Stewart M. I., O'Connell K. M. The role of categorization in visual search for orientation. J Exp Psychol Hum Percept Perform. 1992 Feb;18(1):34–49. doi: 10.1037//0096-1523.18.1.34. [DOI] [PubMed] [Google Scholar]
  42. Wolfe J. M. Visual search in continuous, naturalistic stimuli. Vision Res. 1994 May;34(9):1187–1195. doi: 10.1016/0042-6989(94)90300-x. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
9753784s1.pdf (106.3KB, pdf)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES