Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 Sep 7;265(1406):1587–1593. doi: 10.1098/rspb.1998.0476

Biases in three-dimensional structure-from-motion arise from noise in the early visual system.

M A Hogervorst 1, R A Eagle 1
PMCID: PMC1689343  PMID: 9753782

Abstract

The projected pattern of retinal-image motion supplies the human visual system with valuable information about properties of the three-dimensional environment. How well three-dimensional properties can be recovered depends both on the accuracy with which the early motion system estimates retinal motion, and on the way later processes interpret this retinal motion. Here we combine both early and late stages of the computational process to account for the hitherto puzzling phenomenon of systematic biases in three-dimensional shape perception. We present data showing how the perceived depth of a hinged plane ('an open book') can be systematically biased by the extent over which it rotates. We then present a Bayesian model that combines early measurement noise with geometric reconstruction of the three-dimensional scene. Although this model has no in-built bias towards particular three-dimensional shapes, it accounts for the data well. Our analysis suggests that the biases stem largely from the geometric constraints imposed on what three-dimensional scenes are compatible with the (noisy) early motion measurements. Given these findings, we suggest that the visual system may act as an optimal estimator of three-dimensional structure-from-motion.

Full Text

The Full Text of this article is available as a PDF (231.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Braunstein M. L., Liter J. C., Tittle J. S. Recovering three-dimensional shape from perspective translations and orthographic rotations. J Exp Psychol Hum Percept Perform. 1993 Jun;19(3):598–614. doi: 10.1037//0096-1523.19.3.598. [DOI] [PubMed] [Google Scholar]
  2. Caudek C., Proffitt D. R. Depth perception in motion parallax and stereokinesis. J Exp Psychol Hum Percept Perform. 1993 Feb;19(1):32–47. doi: 10.1037//0096-1523.19.1.32. [DOI] [PubMed] [Google Scholar]
  3. De Bruyn B., Orban G. A. Human velocity and direction discrimination measured with random dot patterns. Vision Res. 1988;28(12):1323–1335. doi: 10.1016/0042-6989(88)90064-8. [DOI] [PubMed] [Google Scholar]
  4. Eagle R. A., Blake A. Two-dimensional constraints on three-dimensional structure from motion tasks. Vision Res. 1995 Oct;35(20):2927–2941. doi: 10.1016/0042-6989(95)00101-5. [DOI] [PubMed] [Google Scholar]
  5. Field D. J. Relations between the statistics of natural images and the response properties of cortical cells. J Opt Soc Am A. 1987 Dec;4(12):2379–2394. doi: 10.1364/josaa.4.002379. [DOI] [PubMed] [Google Scholar]
  6. Glennerster A., Rogers B. J., Bradshaw M. F. Stereoscopic depth constancy depends on the subject's task. Vision Res. 1996 Nov;36(21):3441–3456. doi: 10.1016/0042-6989(96)00090-9. [DOI] [PubMed] [Google Scholar]
  7. Johnston E. B., Cumming B. G., Landy M. S. Integration of stereopsis and motion shape cues. Vision Res. 1994 Sep;34(17):2259–2275. doi: 10.1016/0042-6989(94)90106-6. [DOI] [PubMed] [Google Scholar]
  8. Koenderink J. J., van Doorn A. J. Affine structure from motion. J Opt Soc Am A. 1991 Feb;8(2):377–385. doi: 10.1364/josaa.8.000377. [DOI] [PubMed] [Google Scholar]
  9. Liter J. C., Braunstein M. L., Hoffman D. D. Inferring structure from motion in two-view and multiview displays. Perception. 1993;22(12):1441–1465. doi: 10.1068/p221441. [DOI] [PubMed] [Google Scholar]
  10. McKee S. P., Nakayama K. The detection of motion in the peripheral visual field. Vision Res. 1984;24(1):25–32. doi: 10.1016/0042-6989(84)90140-8. [DOI] [PubMed] [Google Scholar]
  11. Rogers B., Graham M. Motion parallax as an independent cue for depth perception. Perception. 1979;8(2):125–134. doi: 10.1068/p080125. [DOI] [PubMed] [Google Scholar]
  12. Snowden R. J., Braddick O. J. The temporal integration and resolution of velocity signals. Vision Res. 1991;31(5):907–914. doi: 10.1016/0042-6989(91)90156-y. [DOI] [PubMed] [Google Scholar]
  13. Tittle J. S., Todd J. T., Perotti V. J., Norman J. F. Systematic distortion of perceived three-dimensional structure from motion and binocular stereopsis. J Exp Psychol Hum Percept Perform. 1995 Jun;21(3):663–678. doi: 10.1037//0096-1523.21.3.663. [DOI] [PubMed] [Google Scholar]
  14. Todd J. T., Bressan P. The perception of 3-dimensional affine structure from minimal apparent motion sequences. Percept Psychophys. 1990 Nov;48(5):419–430. doi: 10.3758/bf03211585. [DOI] [PubMed] [Google Scholar]
  15. WALLACH H., O'CONNELL D. N. The kinetic depth effect. J Exp Psychol. 1953 Apr;45(4):205–217. doi: 10.1037/h0056880. [DOI] [PubMed] [Google Scholar]
  16. Werkhoven P., Snippe H. P., Toet A. Visual processing of optic acceleration. Vision Res. 1992 Dec;32(12):2313–2329. doi: 10.1016/0042-6989(92)90095-z. [DOI] [PubMed] [Google Scholar]
  17. Werkhoven P., van Veen H. A. Extraction of relief from visual motion. Percept Psychophys. 1995 Jul;57(5):645–656. doi: 10.3758/bf03213270. [DOI] [PubMed] [Google Scholar]
  18. Westheimer G., McKee S. P. What prior uniocular processing is necessary for stereopsis? Invest Ophthalmol Vis Sci. 1979 Jun;18(6):614–621. [PubMed] [Google Scholar]
  19. van Damme W. J., van de Grind W. A. Active vision and the identification of three-dimensional shape. Vision Res. 1993 Jul;33(11):1581–1587. doi: 10.1016/0042-6989(93)90151-l. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES