Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 Sep 7;265(1406):1637–1641. doi: 10.1098/rspb.1998.0482

On the adaptive significance of stress-induced immunosuppression.

L Råberg 1, M Grahn 1, D Hasselquist 1, E Svensson 1
PMCID: PMC1689346  PMID: 9753786

Abstract

We approach the field of stress immunology from an ecological point of view and ask: why should a heavy physical workload, for example as a result of a high reproductive effort, compromise immune function? We argue that immunosuppression by neuroendocrine mechanisms, such as stress hormones, during heavy physical workload is adaptive, and consider two different ultimate explanations of such immunosuppression. First, several authors have suggested that the immune system is suppressed to reallocate resources to other metabolic demands. In our view, this hypothesis assumes that considerable amounts of energy or nutrients can be saved by suppressing the immune system; however, this assumption requires further investigation. Second, we suggest an alternative explanation based on the idea that the immune system is tightly regulated by neuroendocrine mechanisms to avoid hyperactivation and ensuing autoimmune responses. We hypothesize that the risk of autoimmune responses increases during heavy physical workload and that the immune system is suppressed to counteract this.

Full Text

The Full Text of this article is available as a PDF (140.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bagby G. J., Sawaya D. E., Crouch L. D., Shepherd R. E. Prior exercise suppresses the plasma tumor necrosis factor response to bacterial lipopolysaccharide. J Appl Physiol (1985) 1994 Sep;77(3):1542–1547. doi: 10.1152/jappl.1994.77.3.1542. [DOI] [PubMed] [Google Scholar]
  2. Baracos V. E., Whitmore W. T., Gale R. The metabolic cost of fever. Can J Physiol Pharmacol. 1987 Jun;65(6):1248–1254. doi: 10.1139/y87-199. [DOI] [PubMed] [Google Scholar]
  3. Behnke J. M., Barnard C. J., Wakelin D. Understanding chronic nematode infections: evolutionary considerations, current hypotheses and the way forward. Int J Parasitol. 1992 Nov;22(7):861–907. doi: 10.1016/0020-7519(92)90046-n. [DOI] [PubMed] [Google Scholar]
  4. Bendich A. Antioxidant vitamins and human immune responses. Vitam Horm. 1996;52:35–62. doi: 10.1016/s0083-6729(08)60406-9. [DOI] [PubMed] [Google Scholar]
  5. Besedovsky H. O., del Rey A. E., Sorkin E. Immune-neuroendocrine interactions. J Immunol. 1985 Aug;135(2 Suppl):750s–754s. [PubMed] [Google Scholar]
  6. Besedovsky H. O., del Rey A. Immune-neuro-endocrine interactions: facts and hypotheses. Endocr Rev. 1996 Feb;17(1):64–102. doi: 10.1210/edrv-17-1-64. [DOI] [PubMed] [Google Scholar]
  7. Camus G., Deby-Dupont G., Duchateau J., Deby C., Pincemail J., Lamy M. Are similar inflammatory factors involved in strenuous exercise and sepsis? Intensive Care Med. 1994 Nov;20(8):602–610. doi: 10.1007/BF01705731. [DOI] [PubMed] [Google Scholar]
  8. Cannon J. G. Exercise and resistance to infection. J Appl Physiol (1985) 1993 Mar;74(3):973–981. doi: 10.1152/jappl.1993.74.3.973. [DOI] [PubMed] [Google Scholar]
  9. Cannon J. G., Kluger M. J. Endogenous pyrogen activity in human plasma after exercise. Science. 1983 May 6;220(4597):617–619. doi: 10.1126/science.6836306. [DOI] [PubMed] [Google Scholar]
  10. Craddock C. G. Corticosteroid-induced lymphopenia, immunosuppression, and body defense. Ann Intern Med. 1978 Apr;88(4):564–566. doi: 10.7326/0003-4819-88-4-564. [DOI] [PubMed] [Google Scholar]
  11. Demas G. E., Chefer V., Talan M. I., Nelson R. J. Metabolic costs of mounting an antigen-stimulated immune response in adult and aged C57BL/6J mice. Am J Physiol. 1997 Nov;273(5 Pt 2):R1631–R1637. doi: 10.1152/ajpregu.1997.273.5.R1631. [DOI] [PubMed] [Google Scholar]
  12. Fielding R. A., Manfredi T. J., Ding W., Fiatarone M. A., Evans W. J., Cannon J. G. Acute phase response in exercise. III. Neutrophil and IL-1 beta accumulation in skeletal muscle. Am J Physiol. 1993 Jul;265(1 Pt 2):R166–R172. doi: 10.1152/ajpregu.1993.265.1.R166. [DOI] [PubMed] [Google Scholar]
  13. Gustafsson L., Nordling D., Andersson M. S., Sheldon B. C., Qvarnström A. Infectious diseases, reproductive effort and the cost of reproduction in birds. Philos Trans R Soc Lond B Biol Sci. 1994 Nov 29;346(1317):323–331. doi: 10.1098/rstb.1994.0149. [DOI] [PubMed] [Google Scholar]
  14. Haregewoin A., Singh B., Gupta R. S., Finberg R. W. A mycobacterial heat-shock protein-responsive gamma delta T cell clone also responds to the homologous human heat-shock protein: a possible link between infection and autoimmunity. J Infect Dis. 1991 Jan;163(1):156–160. doi: 10.1093/infdis/163.1.156. [DOI] [PubMed] [Google Scholar]
  15. Hoffman-Goetz L., Pedersen B. K. Exercise and the immune system: a model of the stress response? Immunol Today. 1994 Aug;15(8):382–387. doi: 10.1016/0167-5699(94)90177-5. [DOI] [PubMed] [Google Scholar]
  16. Jenkins R. R. Exercise, oxidative stress, and antioxidants: a review. Int J Sport Nutr. 1993 Dec;3(4):356–375. doi: 10.1123/ijsn.3.4.356. [DOI] [PubMed] [Google Scholar]
  17. Jones D. B., Coulson A. F., Duff G. W. Sequence homologies between hsp60 and autoantigens. Immunol Today. 1993 Mar;14(3):115–118. doi: 10.1016/0167-5699(93)90210-C. [DOI] [PubMed] [Google Scholar]
  18. Kapcala L. P., Chautard T., Eskay R. L. The protective role of the hypothalamic-pituitary-adrenal axis against lethality produced by immune, infectious, and inflammatory stress. Ann N Y Acad Sci. 1995 Dec 29;771:419–437. doi: 10.1111/j.1749-6632.1995.tb44699.x. [DOI] [PubMed] [Google Scholar]
  19. Klasing K. C., Laurin D. E., Peng R. K., Fry D. M. Immunologically mediated growth depression in chicks: influence of feed intake, corticosterone and interleukin-1. J Nutr. 1987 Sep;117(9):1629–1637. doi: 10.1093/jn/117.9.1629. [DOI] [PubMed] [Google Scholar]
  20. Lamb J. R., Bal V., Rothbard J. B., Mehlert A., Mendez-Samperio P., Young D. B. The mycobacterial GroEL stress protein: a common target of T-cell recognition in infection and autoimmunity. J Autoimmun. 1989 Jun;2 (Suppl):93–100. doi: 10.1016/0896-8411(89)90120-0. [DOI] [PubMed] [Google Scholar]
  21. Locke M., Noble E. G. Stress proteins: the exercise response. Can J Appl Physiol. 1995 Jun;20(2):155–167. doi: 10.1139/h95-011. [DOI] [PubMed] [Google Scholar]
  22. McEwen B. S., Biron C. A., Brunson K. W., Bulloch K., Chambers W. H., Dhabhar F. S., Goldfarb R. H., Kitson R. P., Miller A. H., Spencer R. L. The role of adrenocorticoids as modulators of immune function in health and disease: neural, endocrine and immune interactions. Brain Res Brain Res Rev. 1997 Feb;23(1-2):79–133. doi: 10.1016/s0165-0173(96)00012-4. [DOI] [PubMed] [Google Scholar]
  23. Munck A., Guyre P. M., Holbrook N. J. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr Rev. 1984 Winter;5(1):25–44. doi: 10.1210/edrv-5-1-25. [DOI] [PubMed] [Google Scholar]
  24. Nieman D. C., Nehlsen-Cannarella S. L. The immune response to exercise. Semin Hematol. 1994 Apr;31(2):166–179. [PubMed] [Google Scholar]
  25. Ornatsky O. I., Connor M. K., Hood D. A. Expression of stress proteins and mitochondrial chaperonins in chronically stimulated skeletal muscle. Biochem J. 1995 Oct 1;311(Pt 1):119–123. doi: 10.1042/bj3110119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. doi: 10.1098/rspb.1997.0141. [DOI] [PMC free article] [Google Scholar]
  27. doi: 10.1098/rspb.1998.0400. [DOI] [PMC free article] [Google Scholar]
  28. Richner H., Christe P., Oppliger A. Paternal investment affects prevalence of malaria. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1192–1194. doi: 10.1073/pnas.92.4.1192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Theofilopoulos A. N. The basis of autoimmunity: Part I. Mechanisms of aberrant self-recognition. Immunol Today. 1995 Feb;16(2):90–98. doi: 10.1016/0167-5699(95)80095-6. [DOI] [PubMed] [Google Scholar]
  30. Wegmann T. G., Lin H., Guilbert L., Mosmann T. R. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today. 1993 Jul;14(7):353–356. doi: 10.1016/0167-5699(93)90235-D. [DOI] [PubMed] [Google Scholar]
  31. Weight L. M., Alexander D., Jacobs P. Strenuous exercise: analogous to the acute-phase response? Clin Sci (Lond) 1991 Nov;81(5):677–683. doi: 10.1042/cs0810677. [DOI] [PubMed] [Google Scholar]
  32. Wick G., Hu Y., Schwarz S., Kroemer G. Immunoendocrine communication via the hypothalamo-pituitary-adrenal axis in autoimmune diseases. Endocr Rev. 1993 Oct;14(5):539–563. doi: 10.1210/edrv-14-5-539. [DOI] [PubMed] [Google Scholar]
  33. Winfield J. B., Jarjour W. N. Stress proteins, autoimmunity, and autoimmune disease. Curr Top Microbiol Immunol. 1991;167:161–189. doi: 10.1007/978-3-642-75875-1_10. [DOI] [PubMed] [Google Scholar]
  34. Woods J. A., Davis J. M., Mayer E. P., Ghaffar A., Pate R. R. Exercise increases inflammatory macrophage antitumor cytotoxicity. J Appl Physiol (1985) 1993 Aug;75(2):879–886. doi: 10.1152/jappl.1993.75.2.879. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES