Abstract
Mammalian auditory hair cells are few in number, experimentally inaccessible, and do not proliferate postnatally or in vitro. Immortal cell lines with the potential to differentiate into auditory hair cells would substantially facilitate auditory research, drug development, and the isolation of critical molecules involved in hair cell biology. We have established two conditionally immortal cell lines that express at least five characteristic hair cell markers. These markers are the transcription factor Brn3.1, the alpha 9 subunit of the acetylcholine receptor, the stereociliary protein fimbrin and the myosins VI and VIIA. These hair cell precursors permit functional studies of cochlear genes and in the longer term they will provide the means to explore therapeutic methods of stimulating auditory hair cell regeneration.
Full Text
The Full Text of this article is available as a PDF (301.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Avraham K. B., Hasson T., Steel K. P., Kingsley D. M., Russell L. B., Mooseker M. S., Copeland N. G., Jenkins N. A. The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat Genet. 1995 Dec;11(4):369–375. doi: 10.1038/ng1295-369. [DOI] [PubMed] [Google Scholar]
- Barald K. F., Lindberg K. H., Hardiman K., Kavka A. I., Lewis J. E., Victor J. C., Gardner C. A., Poniatowski A. Immortalized cell lines from embryonic avian and murine otocysts: tools for molecular studies of the developing inner ear. Int J Dev Neurosci. 1997 Jul;15(4-5):523–540. doi: 10.1016/s0736-5748(96)00108-6. [DOI] [PubMed] [Google Scholar]
- Blanchet C., Eróstegui C., Sugasawa M., Dulon D. Acetylcholine-induced potassium current of guinea pig outer hair cells: its dependence on a calcium influx through nicotinic-like receptors. J Neurosci. 1996 Apr 15;16(8):2574–2584. doi: 10.1523/JNEUROSCI.16-08-02574.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corwin J. T., Oberholtzer J. C. Fish n' chicks: model recipes for hair-cell regeneration? Neuron. 1997 Nov;19(5):951–954. doi: 10.1016/s0896-6273(00)80386-4. [DOI] [PubMed] [Google Scholar]
- Drenckhahn D., Engel K., Höfer D., Merte C., Tilney L., Tilney M. Three different actin filament assemblies occur in every hair cell: each contains a specific actin crosslinking protein. J Cell Biol. 1991 Feb;112(4):641–651. doi: 10.1083/jcb.112.4.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dulon D., Lenoir M. Cholinergic responses in developing outer hair cells of the rat cochlea. Eur J Neurosci. 1996 Sep;8(9):1945–1952. doi: 10.1111/j.1460-9568.1996.tb01338.x. [DOI] [PubMed] [Google Scholar]
- Elgoyhen A. B., Johnson D. S., Boulter J., Vetter D. E., Heinemann S. Alpha 9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell. 1994 Nov 18;79(4):705–715. doi: 10.1016/0092-8674(94)90555-x. [DOI] [PubMed] [Google Scholar]
- Erkman L., McEvilly R. J., Luo L., Ryan A. K., Hooshmand F., O'Connell S. M., Keithley E. M., Rapaport D. H., Ryan A. F., Rosenfeld M. G. Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature. 1996 Jun 13;381(6583):603–606. doi: 10.1038/381603a0. [DOI] [PubMed] [Google Scholar]
- Evans M. G. Acetylcholine activates two currents in guinea-pig outer hair cells. J Physiol. 1996 Mar 1;491(Pt 2):563–578. doi: 10.1113/jphysiol.1996.sp021240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fekete D. M. Cell fate specification in the inner ear. Curr Opin Neurobiol. 1996 Aug;6(4):533–541. doi: 10.1016/s0959-4388(96)80061-4. [DOI] [PubMed] [Google Scholar]
- Forge A., Li L., Corwin J. T., Nevill G. Ultrastructural evidence for hair cell regeneration in the mammalian inner ear. Science. 1993 Mar 12;259(5101):1616–1619. doi: 10.1126/science.8456284. [DOI] [PubMed] [Google Scholar]
- Gibson F., Walsh J., Mburu P., Varela A., Brown K. A., Antonio M., Beisel K. W., Steel K. P., Brown S. D. A type VII myosin encoded by the mouse deafness gene shaker-1. Nature. 1995 Mar 2;374(6517):62–64. doi: 10.1038/374062a0. [DOI] [PubMed] [Google Scholar]
- Glowatzki E., Wild K., Brändle U., Fakler G., Fakler B., Zenner H. P., Ruppersberg J. P. Cell-specific expression of the alpha 9 n-ACh receptor subunit in auditory hair cells revealed by single-cell RT-PCR. Proc Biol Sci. 1995 Nov 22;262(1364):141–147. doi: 10.1098/rspb.1995.0188. [DOI] [PubMed] [Google Scholar]
- Gonos E. S., Burns J. S., Mazars G. R., Kobrna A., Riley T. E., Barnett S. C., Zafarana G., Ludwig R. L., Ikram Z., Powell A. J. Rat embryo fibroblasts immortalized with simian virus 40 large T antigen undergo senescence upon its inactivation. Mol Cell Biol. 1996 Sep;16(9):5127–5138. doi: 10.1128/mcb.16.9.5127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hasson T., Gillespie P. G., Garcia J. A., MacDonald R. B., Zhao Y., Yee A. G., Mooseker M. S., Corey D. P. Unconventional myosins in inner-ear sensory epithelia. J Cell Biol. 1997 Jun 16;137(6):1287–1307. doi: 10.1083/jcb.137.6.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holley M. C., Lawlor P. W. Production of conditionally immortalised cell lines from a transgenic mouse. Audiol Neurootol. 1997 Jan-Apr;2(1-2):25–35. doi: 10.1159/000259227. [DOI] [PubMed] [Google Scholar]
- Holley M. C., Nishida Y., Grix N. Conditional immortalization of hair cells from the inner ear. Int J Dev Neurosci. 1997 Jul;15(4-5):541–552. doi: 10.1016/s0736-5748(96)00109-8. [DOI] [PubMed] [Google Scholar]
- Hopfer U., Jacobberger J. W., Gruenert D. C., Eckert R. L., Jat P. S., Whitsett J. A. Immortalization of epithelial cells. Am J Physiol. 1996 Jan;270(1 Pt 1):C1–11. doi: 10.1152/ajpcell.1996.270.1.C1. [DOI] [PubMed] [Google Scholar]
- Housley G. D., Ashmore J. F. Direct measurement of the action of acetylcholine on isolated outer hair cells of the guinea pig cochlea. Proc Biol Sci. 1991 May 22;244(1310):161–167. doi: 10.1098/rspb.1991.0065. [DOI] [PubMed] [Google Scholar]
- Housley G. D., Ryan A. F. Cholinergic and purinergic neurohumoral signalling in the inner ear: a molecular physiological analysis. Audiol Neurootol. 1997 Jan-Apr;2(1-2):92–110. doi: 10.1159/000259233. [DOI] [PubMed] [Google Scholar]
- Ikram Z., Norton T., Jat P. S. The biological clock that measures the mitotic life-span of mouse embryo fibroblasts continues to function in the presence of simian virus 40 large tumor antigen. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6448–6452. doi: 10.1073/pnas.91.14.6448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jat P. S., Noble M. D., Ataliotis P., Tanaka Y., Yannoutsos N., Larsen L., Kioussis D. Direct derivation of conditionally immortal cell lines from an H-2Kb-tsA58 transgenic mouse. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5096–5100. doi: 10.1073/pnas.88.12.5096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones J. E., Corwin J. T. Regeneration of sensory cells after laser ablation in the lateral line system: hair cell lineage and macrophage behavior revealed by time-lapse video microscopy. J Neurosci. 1996 Jan 15;16(2):649–662. doi: 10.1523/JNEUROSCI.16-02-00649.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelley M. W., Talreja D. R., Corwin J. T. Replacement of hair cells after laser microbeam irradiation in cultured organs of corti from embryonic and neonatal mice. J Neurosci. 1995 Apr;15(4):3013–3026. doi: 10.1523/JNEUROSCI.15-04-03013.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelley M. W., Xu X. M., Wagner M. A., Warchol M. E., Corwin J. T. The developing organ of Corti contains retinoic acid and forms supernumerary hair cells in response to exogenous retinoic acid in culture. Development. 1993 Dec;119(4):1041–1053. doi: 10.1242/dev.119.4.1041. [DOI] [PubMed] [Google Scholar]
- Kuijpers W., Tonnaer E. L., Peters T. A., Ramaekers F. C. Developmentally-regulated coexpression of vimentin and cytokeratins in the rat inner ear. Hear Res. 1992 Sep;62(1):1–10. doi: 10.1016/0378-5955(92)90197-u. [DOI] [PubMed] [Google Scholar]
- Lewis T. M., Harkness P. C., Sivilotti L. G., Colquhoun D., Millar N. S. The ion channel properties of a rat recombinant neuronal nicotinic receptor are dependent on the host cell type. J Physiol. 1997 Dec 1;505(Pt 2):299–306. doi: 10.1111/j.1469-7793.1997.299bb.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu X. Z., Walsh J., Mburu P., Kendrick-Jones J., Cope M. J., Steel K. P., Brown S. D. Mutations in the myosin VIIA gene cause non-syndromic recessive deafness. Nat Genet. 1997 Jun;16(2):188–190. doi: 10.1038/ng0697-188. [DOI] [PubMed] [Google Scholar]
- Milton N. G., Bessis A., Changeux J. P., Latchman D. S. Differential regulation of neuronal nicotinic acetylcholine receptor subunit gene promoters by Brn-3 POU family transcription factors. Biochem J. 1996 Jul 15;317(Pt 2):419–423. doi: 10.1042/bj3170419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris P. J., Lakin N. D., Dawson S. J., Ryabinin A. E., Kilimann M. W., Wilson M. C., Latchman D. S. Differential regulation of genes encoding synaptic proteins by members of the Brn-3 subfamily of POU transcription factors. Brain Res Mol Brain Res. 1996 Dec 31;43(1-2):279–285. doi: 10.1016/s0169-328x(96)00207-0. [DOI] [PubMed] [Google Scholar]
- Nicolson T., Rüsch A., Friedrich R. W., Granato M., Ruppersberg J. P., Nüsslein-Volhard C. Genetic analysis of vertebrate sensory hair cell mechanosensation: the zebrafish circler mutants. Neuron. 1998 Feb;20(2):271–283. doi: 10.1016/s0896-6273(00)80455-9. [DOI] [PubMed] [Google Scholar]
- Ninkina N. N., Stevens G. E., Wood J. N., Richardson W. D. A novel Brn3-like POU transcription factor expressed in subsets of rat sensory and spinal cord neurons. Nucleic Acids Res. 1993 Jul 11;21(14):3175–3182. doi: 10.1093/nar/21.14.3175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishida Y., Rivolta M. N., Holley M. C. Timed markers for the differentiation of the cuticular plate and stereocilia in hair cells from the mouse inner ear. J Comp Neurol. 1998 May 25;395(1):18–28. [PubMed] [Google Scholar]
- Pack A. K., Slepecky N. B. Cytoskeletal and calcium-binding proteins in the mammalian organ of Corti: cell type-specific proteins displaying longitudinal and radial gradients. Hear Res. 1995 Nov;91(1-2):119–135. doi: 10.1016/0378-5955(95)00173-5. [DOI] [PubMed] [Google Scholar]
- Petit C. Genes responsible for human hereditary deafness: symphony of a thousand. Nat Genet. 1996 Dec;14(4):385–391. doi: 10.1038/ng1296-385. [DOI] [PubMed] [Google Scholar]
- Puchacz E., Buisson B., Bertrand D., Lukas R. J. Functional expression of nicotinic acetylcholine receptors containing rat alpha 7 subunits in human SH-SY5Y neuroblastoma cells. FEBS Lett. 1994 Nov 7;354(2):155–159. doi: 10.1016/0014-5793(94)01108-7. [DOI] [PubMed] [Google Scholar]
- Ryan AF. Transcription factors and the control of inner ear development. Semin Cell Dev Biol. 1997 Jun;8(3):249–256. doi: 10.1006/scdb.1997.0146. [DOI] [PubMed] [Google Scholar]
- Steinberg M. L., Defendi V. Altered patterns of keratin synthesis in human epidermal keratinocytes transformed by SV40. J Cell Physiol. 1985 Apr;123(1):117–125. doi: 10.1002/jcp.1041230117. [DOI] [PubMed] [Google Scholar]
- Suh E., Traber P. G. An intestine-specific homeobox gene regulates proliferation and differentiation. Mol Cell Biol. 1996 Feb;16(2):619–625. doi: 10.1128/mcb.16.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Séguéla P., Wadiche J., Dineley-Miller K., Dani J. A., Patrick J. W. Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci. 1993 Feb;13(2):596–604. doi: 10.1523/JNEUROSCI.13-02-00596.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vahava O., Morell R., Lynch E. D., Weiss S., Kagan M. E., Ahituv N., Morrow J. E., Lee M. K., Skvorak A. B., Morton C. C. Mutation in transcription factor POU4F3 associated with inherited progressive hearing loss in humans. Science. 1998 Mar 20;279(5358):1950–1954. doi: 10.1126/science.279.5358.1950. [DOI] [PubMed] [Google Scholar]
- Warchol M. E., Lambert P. R., Goldstein B. J., Forge A., Corwin J. T. Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans. Science. 1993 Mar 12;259(5101):1619–1622. doi: 10.1126/science.8456285. [DOI] [PubMed] [Google Scholar]
- Weil D., Blanchard S., Kaplan J., Guilford P., Gibson F., Walsh J., Mburu P., Varela A., Levilliers J., Weston M. D. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature. 1995 Mar 2;374(6517):60–61. doi: 10.1038/374060a0. [DOI] [PubMed] [Google Scholar]
- Weintraub H., Tapscott S. J., Davis R. L., Thayer M. J., Adam M. A., Lassar A. B., Miller A. D. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5434–5438. doi: 10.1073/pnas.86.14.5434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiang M., Gan L., Li D., Chen Z. Y., Zhou L., O'Malley B. W., Jr, Klein W., Nathans J. Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9445–9450. doi: 10.1073/pnas.94.17.9445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiang M., Zhou L., Macke J. P., Yoshioka T., Hendry S. H., Eddy R. L., Shows T. B., Nathans J. The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons. J Neurosci. 1995 Jul;15(7 Pt 1):4762–4785. doi: 10.1523/JNEUROSCI.15-07-04762.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zheng J. L., Lewis A. K., Gao W. Q. Establishment of conditionally immortalized rat utricular epithelial cell lines using a retrovirus-mediated gene transfer technique. Hear Res. 1998 Mar;117(1-2):13–23. doi: 10.1016/s0378-5955(97)00205-0. [DOI] [PubMed] [Google Scholar]
- Zine A., de Ribaupierre F. Replacement of mammalian auditory hair cells. Neuroreport. 1998 Jan 26;9(2):263–268. doi: 10.1097/00001756-199801260-00016. [DOI] [PubMed] [Google Scholar]