Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 Sep 22;265(1407):1697–1705. doi: 10.1098/rspb.1998.0491

Gene-pool variation in caledonian and European Scots pine (Pinus sylvestris L.) revealed by chloroplast simple-sequence repeats.

J Provan 1, N Soranzo 1, N J Wilson 1, J W McNicol 1, G I Forrest 1, J Cottrell 1, W Powell 1
PMCID: PMC1689356  PMID: 9787466

Abstract

We have used polymorphic chloroplast simple-sequence repeats to analyse levels of genetic variation within and between seven native Scottish and eight mainland European populations of Scots pine (Pinus sylvestris L.). Diversity levels for the Scottish populations based on haplotype frequency were far in excess of those previously obtained using monoterpenes and isozymes and confirmed lower levels of genetic variation within the derelict population at Glen Falloch. The diversity levels were higher than those reported in similar studies in other Pinus species. An analysis of molecular variance (AMOVA) showed that small (3.24-8.81%) but significant (p < or = 0.001) portions of the variation existed between the populations and that there was no significant difference between the Scottish and the mainland European populations. Evidence of population substructure was found in the Rannoch population, which exhibited two subgroups. Finally, one of the loci studied exhibited an allele distribution uncharacteristic of the stepwise mutation model of evolution of simple-sequence repeats, and sequencing of the PCR products revealed that this was due to a duplication rather than slippage in the repeat region. An examination of the distribution of this mutation suggests that it may have occurred fairly recently in the Wester Ross region or that it may be evidence of a refugial population.

Full Text

The Full Text of this article is available as a PDF (253.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Di Rienzo A., Peterson A. C., Garza J. C., Valdes A. M., Slatkin M., Freimer N. B. Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3166–3170. doi: 10.1073/pnas.91.8.3166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dong J., Wagner D. B. Paternally inherited chloroplast polymorphism in Pinus: estimation of diversity and population subdivision, and tests of disequilibrium with a maternally inherited mitochondrial polymorphism. Genetics. 1994 Mar;136(3):1187–1194. doi: 10.1093/genetics/136.3.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Excoffier L., Smouse P. E., Quattro J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992 Jun;131(2):479–491. doi: 10.1093/genetics/131.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Freimer N. B., Slatkin M. Microsatellites: evolution and mutational processes. Ciba Found Symp. 1996;197:51–72. doi: 10.1002/9780470514887.ch4. [DOI] [PubMed] [Google Scholar]
  5. Goldstein D. B., Ruiz Linares A., Cavalli-Sforza L. L., Feldman M. W. Genetic absolute dating based on microsatellites and the origin of modern humans. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6723–6727. doi: 10.1073/pnas.92.15.6723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kostia S., Varvio S. L., Vakkari P., Pulkkinen P. Microsatellite sequences in a conifer, Pinus sylvestris. Genome. 1995 Dec;38(6):1244–1248. doi: 10.1139/g95-163. [DOI] [PubMed] [Google Scholar]
  7. Latta R. G., Mitton J. B. A comparison of population differentiation across four classes of gene marker in limber pine (Pinus flexilis James). Genetics. 1997 Jul;146(3):1153–1163. doi: 10.1093/genetics/146.3.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Michalakis Y., Excoffier L. A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics. 1996 Mar;142(3):1061–1064. doi: 10.1093/genetics/142.3.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pfeiffer A., Olivieri A. M., Morgante M. Identification and characterization of microsatellites in Norway spruce (Picea abies K.). Genome. 1997 Aug;40(4):411–419. doi: 10.1139/g97-055. [DOI] [PubMed] [Google Scholar]
  10. Powell W., Morgante M., Andre C., McNicol J. W., Machray G. C., Doyle J. J., Tingey S. V., Rafalski J. A. Hypervariable microsatellites provide a general source of polymorphic DNA markers for the chloroplast genome. Curr Biol. 1995 Sep 1;5(9):1023–1029. doi: 10.1016/s0960-9822(95)00206-5. [DOI] [PubMed] [Google Scholar]
  11. Powell W., Morgante M., Doyle J. J., McNicol J. W., Tingey S. V., Rafalski A. J. Genepool variation in genus Glycine subgenus Soja revealed by polymorphic nuclear and chloroplast microsatellites. Genetics. 1996 Oct;144(2):793–803. doi: 10.1093/genetics/144.2.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Powell W., Morgante M., McDevitt R., Vendramin G. G., Rafalski J. A. Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7759–7763. doi: 10.1073/pnas.92.17.7759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Provan J., Corbett G., McNicol J. W., Powell W. Chloroplast DNA variability in wild and cultivated rice (Oryza spp.) revealed by polymorphic chloroplast simple sequence repeats. Genome. 1997 Feb;40(1):104–110. doi: 10.1139/g97-014. [DOI] [PubMed] [Google Scholar]
  14. Provan J., Corbett G., Waugh R., McNicol J. W., Morgante M., Powell W. DNA fingerprints of rice (Oryza sativa) obtained from hypervariable chloroplast simple sequence repeats. Proc Biol Sci. 1996 Oct 22;263(1375):1275–1281. doi: 10.1098/rspb.1996.0187. [DOI] [PubMed] [Google Scholar]
  15. Slatkin M. A measure of population subdivision based on microsatellite allele frequencies. Genetics. 1995 Jan;139(1):457–462. doi: 10.1093/genetics/139.1.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 1989 Aug 25;17(16):6463–6471. doi: 10.1093/nar/17.16.6463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Valdes A. M., Slatkin M., Freimer N. B. Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics. 1993 Mar;133(3):737–749. doi: 10.1093/genetics/133.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Vendramin G. G., Lelli L., Rossi P., Morgante M. A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Mol Ecol. 1996 Aug;5(4):595–598. doi: 10.1111/j.1365-294x.1996.tb00353.x. [DOI] [PubMed] [Google Scholar]
  19. Wagner D. B., Furnier G. R., Saghai-Maroof M. A., Williams S. M., Dancik B. P., Allard R. W. Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids. Proc Natl Acad Sci U S A. 1987 Apr;84(7):2097–2100. doi: 10.1073/pnas.84.7.2097. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES