Abstract
A mathematical model is presented for the transmission of a microparasite where the hosts occupy one of two states, uninfected or infected. In each state, the hosts are distributed over a continuous range of immunity. The immune levels vary within hosts due to the processes of waning of immunity (when uninfected), and increasing immunity (when infected), eventually resulting in recovery. Immunity level also influences the host's ability to infect or be infected. Thus the proposed model incorporates both inter- and intra-host dynamics. It is shown from equilibrium results that this model is a general form of the susceptible-infected-resistant (SIR) and susceptible-infected-susceptible (SIS) family of models, a development that is useful for exploring multistrain pathogen transmission and use of vaccines which confer temporary protection.
Full Text
The Full Text of this article is available as a PDF (180.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andreasen V., Lin J., Levin S. A. The dynamics of cocirculating influenza strains conferring partial cross-immunity. J Math Biol. 1997 Aug;35(7):825–842. doi: 10.1007/s002850050079. [DOI] [PubMed] [Google Scholar]
- Calvert N., Cutts F., Irving R., Brown D., Marsh J., Miller E. Measles immunity and response to revaccination among secondary school children in Cumbria. Epidemiol Infect. 1996 Feb;116(1):65–70. doi: 10.1017/s0950268800058969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castillo-Chavez C., Huang W., Li J. The effects of females' susceptibility on the coexistence of multiple pathogen strains of sexually transmitted diseases. J Math Biol. 1997 May;35(5):503–522. doi: 10.1007/s002850050063. [DOI] [PubMed] [Google Scholar]
- Chen R. T., Markowitz L. E., Albrecht P., Stewart J. A., Mofenson L. M., Preblud S. R., Orenstein W. A. Measles antibody: reevaluation of protective titers. J Infect Dis. 1990 Nov;162(5):1036–1042. doi: 10.1093/infdis/162.5.1036. [DOI] [PubMed] [Google Scholar]
- Cox M. J., Azevedo R. S., Cane P. A., Massad E., Medley G. F. Seroepidemiological study of respiratory syncytial virus in São Paulo state, Brazil. J Med Virol. 1998 Jul;55(3):234–239. doi: 10.1002/(sici)1096-9071(199807)55:3<234::aid-jmv9>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
- Edmunds W. J., Medley G. F., Nokes D. J. Vaccination against hepatitis B virus in highly endemic areas: waning vaccine-induced immunity and the need for booster doses. Trans R Soc Trop Med Hyg. 1996 Jul-Aug;90(4):436–440. doi: 10.1016/s0035-9203(96)90539-8. [DOI] [PubMed] [Google Scholar]
- Gay N. J. Analysis of serological surveys using mixture models: application to a survey of parvovirus B19. Stat Med. 1996 Jul 30;15(14):1567–1573. doi: 10.1002/(SICI)1097-0258(19960730)15:14<1567::AID-SIM289>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
- Keeling M. J., Grenfell B. T. Disease extinction and community size: modeling the persistence of measles. Science. 1997 Jan 3;275(5296):65–67. doi: 10.1126/science.275.5296.65. [DOI] [PubMed] [Google Scholar]
- Milner F. A., Rabbiolo G. Rapidly converging numerical algorithms for models of population dynamics. J Math Biol. 1992;30(7):733–753. doi: 10.1007/BF00173266. [DOI] [PubMed] [Google Scholar]
- Offit P. A. Rotaviruses: immunological determinants of protection against infection and disease. Adv Virus Res. 1994;44:161–202. doi: 10.1016/S0065-3527(08)60329-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sulsky D. Numerical solution of structured population models. I. Age structure. J Math Biol. 1993;31(8):817–839. doi: 10.1007/BF00168048. [DOI] [PubMed] [Google Scholar]
