Abstract
Several theories have been proposed to explain the evolution of species differences in brain size, but no consensus has emerged. One unresolved question is whether brain size differences are a result of neural specializations or of biological constraints affecting the whole brain. Here I show that, among primates, brain size variation is associated with visual specialization. Primates with large brains for their body size have relatively expanded visual brain areas, including the primary visual cortex and lateral geniculate nucleus. Within the visual system, it is, in particular, one functionally specialized pathway upon which selection has acted: evolutionary changes in the number of neurons in parvocellular, but not magnocellular, layers of the lateral geniculate nucleus are correlated with changes in both brain size and ecological variables (diet and social group size). Given the known functions of the parvocellular pathway, these results suggest that the relatively large brains of frugivorous species are products of selection on the ability to perceive and select fruits using specific visual cues such as colour. The separate correlation between group size and visual brain evolution, on the other hand, may indicate the visual basis of social information processing in the primate brain.
Full Text
The Full Text of this article is available as a PDF (131.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barton R. A. Neocortex size and behavioural ecology in primates. Proc Biol Sci. 1996 Feb 22;263(1367):173–177. doi: 10.1098/rspb.1996.0028. [DOI] [PubMed] [Google Scholar]
- Barton R. A., Purvis A., Harvey P. H. Evolutionary radiation of visual and olfactory brain systems in primates, bats and insectivores. Philos Trans R Soc Lond B Biol Sci. 1995 Jun 29;348(1326):381–392. doi: 10.1098/rstb.1995.0076. [DOI] [PubMed] [Google Scholar]
- Bolen R. H., Green S. M. Use of olfactory cues in foraging by owl monkeys (Aotus nancymai) and capuchin monkeys (Cebus apella). J Comp Psychol. 1997 Jun;111(2):152–158. doi: 10.1037/0735-7036.111.2.152. [DOI] [PubMed] [Google Scholar]
- Drury H. A., Van Essen D. C., Anderson C. H., Lee C. W., Coogan T. A., Lewis J. W. Computerized mappings of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system. J Cogn Neurosci. 1996;8(1):1–28. doi: 10.1162/jocn.1996.8.1.1. [DOI] [PubMed] [Google Scholar]
- Finlay B. L., Darlington R. B. Linked regularities in the development and evolution of mammalian brains. Science. 1995 Jun 16;268(5217):1578–1584. doi: 10.1126/science.7777856. [DOI] [PubMed] [Google Scholar]
- Goldman-Rakic P. S. The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philos Trans R Soc Lond B Biol Sci. 1996 Oct 29;351(1346):1445–1453. doi: 10.1098/rstb.1996.0129. [DOI] [PubMed] [Google Scholar]
- Jacobs G. H. The distribution and nature of colour vision among the mammals. Biol Rev Camb Philos Soc. 1993 Aug;68(3):413–471. doi: 10.1111/j.1469-185x.1993.tb00738.x. [DOI] [PubMed] [Google Scholar]
- Joffe T. H., Dunbar R. I. Visual and socio-cognitive information processing in primate brain evolution. Proc Biol Sci. 1997 Sep 22;264(1386):1303–1307. doi: 10.1098/rspb.1997.0180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Livingstone M., Hubel D. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science. 1988 May 6;240(4853):740–749. doi: 10.1126/science.3283936. [DOI] [PubMed] [Google Scholar]
- Martin R. D. Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature. 1981 Sep 3;293(5827):57–60. doi: 10.1038/293057a0. [DOI] [PubMed] [Google Scholar]
- Mollon J. D. "Tho' she kneel'd in that place where they grew..." The uses and origins of primate colour vision. J Exp Biol. 1989 Sep;146:21–38. doi: 10.1242/jeb.146.1.21. [DOI] [PubMed] [Google Scholar]
- Osorio D., Vorobyev M. Colour vision as an adaptation to frugivory in primates. Proc Biol Sci. 1996 May 22;263(1370):593–599. doi: 10.1098/rspb.1996.0089. [DOI] [PubMed] [Google Scholar]
- Perrett D. I., Hietanen J. K., Oram M. W., Benson P. J. Organization and functions of cells responsive to faces in the temporal cortex. Philos Trans R Soc Lond B Biol Sci. 1992 Jan 29;335(1273):23–30. doi: 10.1098/rstb.1992.0003. [DOI] [PubMed] [Google Scholar]
- Purvis A. A composite estimate of primate phylogeny. Philos Trans R Soc Lond B Biol Sci. 1995 Jun 29;348(1326):405–421. doi: 10.1098/rstb.1995.0078. [DOI] [PubMed] [Google Scholar]
- Purvis A., Rambaut A. Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data. Comput Appl Biosci. 1995 Jun;11(3):247–251. doi: 10.1093/bioinformatics/11.3.247. [DOI] [PubMed] [Google Scholar]
- Sawaguchi T. The size of the neocortex in relation to ecology and social structure in monkeys and apes. Folia Primatol (Basel) 1992;58(3):130–145. [PubMed] [Google Scholar]
- Van Essen D. C., Anderson C. H., Felleman D. J. Information processing in the primate visual system: an integrated systems perspective. Science. 1992 Jan 24;255(5043):419–423. doi: 10.1126/science.1734518. [DOI] [PubMed] [Google Scholar]
- Yoder A. D. Relative position of the Cheirogaleidae in strepsirhine phylogeny: a comparison of morphological and molecular methods and results. Am J Phys Anthropol. 1994 May;94(1):25–46. doi: 10.1002/ajpa.1330940104. [DOI] [PubMed] [Google Scholar]
- Zeki S., Shipp S. The functional logic of cortical connections. Nature. 1988 Sep 22;335(6188):311–317. doi: 10.1038/335311a0. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
