Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 Nov 7;265(1410):2033–2041. doi: 10.1098/rspb.1998.0537

Population dynamic interference among childhood diseases.

P Rohani 1, D J Earn 1, B Finkenstädt 1, B T Grenfell 1
PMCID: PMC1689490  PMID: 9842732

Abstract

Epidemiologists usually study the interaction between a host population and one parasitic infection. However, different parasite species effectively compete, in an ecological sense, for the same finite group of susceptible hosts, so there may be an indirect effect on the population dynamics of one disease due to epidemics of another. In human populations, recovery from any serious infection is normally preceded by a period of convalescence, during which infected individuals stay at home and are effectively shielded from exposure to other infectious diseases. We present a model for the dynamics of two infectious diseases, incorporating a temporary removal of susceptibles. We use this model to explore population-level consequences of a temporary insusceptibility in childhood diseases, the dynamics of which are partly driven by differences in contact rates in and out of school terms. Significant population dynamic interference is predicted and cannot be dismissed in the limited case-study data available for measles and whooping cough in England before the vaccination era.

Full Text

The Full Text of this article is available as a PDF (195.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agur Z., Cojocaru L., Mazor G., Anderson R. M., Danon Y. L. Pulse mass measles vaccination across age cohorts. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11698–11702. doi: 10.1073/pnas.90.24.11698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andreasen V., Lin J., Levin S. A. The dynamics of cocirculating influenza strains conferring partial cross-immunity. J Math Biol. 1997 Aug;35(7):825–842. doi: 10.1007/s002850050079. [DOI] [PubMed] [Google Scholar]
  3. Bolker B. Chaos and complexity in measles models: a comparative numerical study. IMA J Math Appl Med Biol. 1993;10(2):83–95. doi: 10.1093/imammb/10.2.83. [DOI] [PubMed] [Google Scholar]
  4. Clarkson J. A., Fine P. E. The efficiency of measles and pertussis notification in England and Wales. Int J Epidemiol. 1985 Mar;14(1):153–168. doi: 10.1093/ije/14.1.153. [DOI] [PubMed] [Google Scholar]
  5. Diekmann O., Kretzschmar M. Patterns in the effects of infectious diseases on population growth. J Math Biol. 1991;29(6):539–570. doi: 10.1007/BF00164051. [DOI] [PubMed] [Google Scholar]
  6. Dietz K. Epidemiologic interference of virus populations. J Math Biol. 1979 Oct;8(3):291–300. doi: 10.1007/BF00276314. [DOI] [PubMed] [Google Scholar]
  7. Earn D. J., Rohani P., Grenfell B. T. Persistence, chaos and synchrony in ecology and epidemiology. Proc Biol Sci. 1998 Jan 7;265(1390):7–10. doi: 10.1098/rspb.1998.0256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Feng Z., Thieme H. R. Recurrent outbreaks of childhood diseases revisited: the impact of isolation. Math Biosci. 1995 Jul-Aug;128(1-2):93–130. doi: 10.1016/0025-5564(94)00069-c. [DOI] [PubMed] [Google Scholar]
  9. Finkenstädt B., Grenfell B. Empirical determinants of measles metapopulation dynamics in England and Wales. Proc Biol Sci. 1998 Feb 7;265(1392):211–220. doi: 10.1098/rspb.1998.0284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Finkenstädt B., Keeling M., Grenfell B. Patterns of density dependence in measles dynamics. Proc Biol Sci. 1998 May 7;265(1398):753–762. doi: 10.1098/rspb.1998.0357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gilbert S. C., Plebanski M., Gupta S., Morris J., Cox M., Aidoo M., Kwiatkowski D., Greenwood B. M., Whittle H. C., Hill A. V. Association of malaria parasite population structure, HLA, and immunological antagonism. Science. 1998 Feb 20;279(5354):1173–1177. doi: 10.1126/science.279.5354.1173. [DOI] [PubMed] [Google Scholar]
  12. Grenfell B. T., Anderson R. M. Pertussis in England and Wales: an investigation of transmission dynamics and control by mass vaccination. Proc R Soc Lond B Biol Sci. 1989 Apr 22;236(1284):213–252. doi: 10.1098/rspb.1989.0022. [DOI] [PubMed] [Google Scholar]
  13. Gupta S., Trenholme K., Anderson R. M., Day K. P. Antigenic diversity and the transmission dynamics of Plasmodium falciparum. Science. 1994 Feb 18;263(5149):961–963. doi: 10.1126/science.8310293. [DOI] [PubMed] [Google Scholar]
  14. Hethcote H. W. An age-structured model for pertussis transmission. Math Biosci. 1997 Oct 15;145(2):89–136. doi: 10.1016/s0025-5564(97)00014-x. [DOI] [PubMed] [Google Scholar]
  15. Hodder S. L., Mortimer E. A., Jr Epidemiology of pertussis and reactions to pertussis vaccine. Epidemiol Rev. 1992;14:243–267. doi: 10.1093/oxfordjournals.epirev.a036089. [DOI] [PubMed] [Google Scholar]
  16. Kuznetsov Y. A., Piccardi C. Bifurcation analysis pf periodic SEIR and SIR epidemic models. J Math Biol. 1994;32(2):109–121. doi: 10.1007/BF00163027. [DOI] [PubMed] [Google Scholar]
  17. Levin S. A., Durrett R. From individuals to epidemics. Philos Trans R Soc Lond B Biol Sci. 1996 Nov 29;351(1347):1615–1621. doi: 10.1098/rstb.1996.0145. [DOI] [PubMed] [Google Scholar]
  18. Li M. Y., Muldowney J. S. Global stability for the SEIR model in epidemiology. Math Biosci. 1995 Feb;125(2):155–164. doi: 10.1016/0025-5564(95)92756-5. [DOI] [PubMed] [Google Scholar]
  19. London W. P., Yorke J. A. Recurrent outbreaks of measles, chickenpox and mumps. I. Seasonal variation in contact rates. Am J Epidemiol. 1973 Dec;98(6):453–468. doi: 10.1093/oxfordjournals.aje.a121575. [DOI] [PubMed] [Google Scholar]
  20. McLean A. R., Anderson R. M. Measles in developing countries. Part II. The predicted impact of mass vaccination. Epidemiol Infect. 1988 Jun;100(3):419–442. doi: 10.1017/s0950268800067170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nokes D. J., Swinton J. The control of childhood viral infections by pulse vaccination. IMA J Math Appl Med Biol. 1995;12(1):29–53. doi: 10.1093/imammb/12.1.29. [DOI] [PubMed] [Google Scholar]
  22. Schaffer W. M., Kot M. Nearly one dimensional dynamics in an epidemic. J Theor Biol. 1985 Jan 21;112(2):403–427. doi: 10.1016/s0022-5193(85)80294-0. [DOI] [PubMed] [Google Scholar]
  23. Schenzle D. An age-structured model of pre- and post-vaccination measles transmission. IMA J Math Appl Med Biol. 1984;1(2):169–191. doi: 10.1093/imammb/1.2.169. [DOI] [PubMed] [Google Scholar]
  24. Scott P. T., Clark J. B., Miser W. F. Pertussis: an update on primary prevention and outbreak control. Am Fam Physician. 1997 Sep 15;56(4):1121–1128. [PubMed] [Google Scholar]
  25. Taylor L. H., Walliker D., Read A. F. Mixed-genotype infections of malaria parasites: within-host dynamics and transmission success of competing clones. Proc Biol Sci. 1997 Jun 22;264(1383):927–935. doi: 10.1098/rspb.1997.0128. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES