Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 Nov 7;265(1410):2111–2119. doi: 10.1098/rspb.1998.0547

Load minimization of the genetic code: history does not explain the pattern

S J Freeland, L D Hurst
PMCID: PMC1689495

Abstract

The average effect of errors acting on a genetic code (the change in amino-acid meaning resulting from point mutation and mistranslation) may be quantified as its 'load'. The natural genetic code shows a clear property of minimizing this load when compared against randomly generated variant codes. Two hypotheses may be considered to explain this property. First, it is possible that the natural code is the result of selection to minimize this load. Second, it is possible that the property is an historical artefact. It has previously been reported that amino acids that have been assigned to codons starting with the same base come from the same biosynthetic pathway. This probably reflects the manner in which the code evolved from a simpler code, and says more about the physicochemical mechanisms of code assembly than about selection. The apparent load minimization of the code may therefore follow as a consequence of the fact that the code could not have evolved any other way than to allow biochemically related amino acids to have related codons. Here then, we ask whether this 'historical' force alone can explain the efficiency of the natural code in minimizing the effects of error. We therefore compare the error-minimizing ability of the natural code with that of alternative codes which, rather than being a random selection, are restricted such that amino acids from the same biochemical pathway all share the same first base. We find that although on average the restricted set of codes show a slightly higher efficiency than random ones, the real code remains extremely efficient relative to this subset P = 0.0003. This indicates that for the most part historical features do not explain the load- minimization property of the natural code. The importance of selection is further supported by the finding that the natural code's efficiency improves relative to that of historically related codes after allowance is made for realistic mutational and mistranslational biases. Once mistranslational biases have been considered, fewer than four per 100,000 alternative codes are better than the natural code.

Full Text

The Full Text of this article is available as a PDF (219.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alff-Steinberger C. The genetic code and error transmission. Proc Natl Acad Sci U S A. 1969 Oct;64(2):584–591. doi: 10.1073/pnas.64.2.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amirnovin R. An analysis of the metabolic theory of the origin of the genetic code. J Mol Evol. 1997 May;44(5):473–476. doi: 10.1007/pl00006170. [DOI] [PubMed] [Google Scholar]
  3. Ardell D. H. On error minimization in a sequential origin of the standard genetic code. J Mol Evol. 1998 Jul;47(1):1–13. doi: 10.1007/pl00006356. [DOI] [PubMed] [Google Scholar]
  4. Bashford J. D., Tsohantjis I., Jarvis P. D. A supersymmetric model for the evolution of the genetic code. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):987–992. doi: 10.1073/pnas.95.3.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crick F. H. The origin of the genetic code. J Mol Biol. 1968 Dec;38(3):367–379. doi: 10.1016/0022-2836(68)90392-6. [DOI] [PubMed] [Google Scholar]
  6. Di Giulio M. On the origin of the genetic code. J Theor Biol. 1997 Aug 21;187(4):573–581. doi: 10.1006/jtbi.1996.0390. [DOI] [PubMed] [Google Scholar]
  7. Di Giulio M. Reflections on the origin of the genetic code: a hypothesis. J Theor Biol. 1998 Mar 21;191(2):191–196. doi: 10.1006/jtbi.1997.0580. [DOI] [PubMed] [Google Scholar]
  8. Di Giulio M. Some aspects of the organization and evolution of the genetic code. J Mol Evol. 1989 Sep;29(3):191–201. doi: 10.1007/BF02100202. [DOI] [PubMed] [Google Scholar]
  9. Di Giulio M. The extension reached by the minimization of the polarity distances during the evolution of the genetic code. J Mol Evol. 1989 Oct;29(4):288–293. doi: 10.1007/BF02103616. [DOI] [PubMed] [Google Scholar]
  10. Epstein C. J. Role of the amino-acid "code" and of selection for conformation in the evolution of proteins. Nature. 1966 Apr 2;210(5031):25–28. doi: 10.1038/210025a0. [DOI] [PubMed] [Google Scholar]
  11. Fitch W. M. The relation between frequencies of amino acids and ordered trinucleotides. J Mol Biol. 1966 Mar;16(1):1–8. doi: 10.1016/s0022-2836(66)80257-7. [DOI] [PubMed] [Google Scholar]
  12. Fitch W. M., Upper K. The phylogeny of tRNA sequences provides evidence for ambiguity reduction in the origin of the genetic code. Cold Spring Harb Symp Quant Biol. 1987;52:759–767. doi: 10.1101/sqb.1987.052.01.085. [DOI] [PubMed] [Google Scholar]
  13. Goldberg A. L., Wittes R. E. Genetic code: aspects of organization. Science. 1966 Jul 22;153(3734):420–424. doi: 10.1126/science.153.3734.420. [DOI] [PubMed] [Google Scholar]
  14. Haig D., Hurst L. D. A quantitative measure of error minimization in the genetic code. J Mol Evol. 1991 Nov;33(5):412–417. doi: 10.1007/BF02103132. [DOI] [PubMed] [Google Scholar]
  15. Hartman H. Speculations on the origin of the genetic code. J Mol Evol. 1995 May;40(5):541–544. doi: 10.1007/BF00166623. [DOI] [PubMed] [Google Scholar]
  16. Jukes T. H. Evolution of the amino acid code: inferences from mitochondrial codes. J Mol Evol. 1983;19(3-4):219–225. doi: 10.1007/BF02099969. [DOI] [PubMed] [Google Scholar]
  17. Jukes T. H., Osawa S. Further comments on codon reassignment. J Mol Evol. 1997 Jul;45(1):1–3. doi: 10.1007/pl00006192. [DOI] [PubMed] [Google Scholar]
  18. Osawa S., Jukes T. H. Codon reassignment (codon capture) in evolution. J Mol Evol. 1989 Apr;28(4):271–278. doi: 10.1007/BF02103422. [DOI] [PubMed] [Google Scholar]
  19. Osawa S., Jukes T. H. On codon reassignment. J Mol Evol. 1995 Aug;41(2):247–249. doi: 10.1007/BF00170679. [DOI] [PubMed] [Google Scholar]
  20. Osawa S., Jukes T. H., Watanabe K., Muto A. Recent evidence for evolution of the genetic code. Microbiol Rev. 1992 Mar;56(1):229–264. doi: 10.1128/mr.56.1.229-264.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pelc S. R., Welton M. G. Stereochemical relationship between coding triplets and amino-acids. Nature. 1966 Feb 26;209(5026):868–870. doi: 10.1038/209868a0. [DOI] [PubMed] [Google Scholar]
  22. Santos M. A., Ueda T., Watanabe K., Tuite M. F. The non-standard genetic code of Candida spp.: an evolving genetic code or a novel mechanism for adaptation? Mol Microbiol. 1997 Nov;26(3):423–431. doi: 10.1046/j.1365-2958.1997.5891961.x. [DOI] [PubMed] [Google Scholar]
  23. Schultz D. W., Yarus M. On malleability in the genetic code. J Mol Evol. 1996 May;42(5):597–601. doi: 10.1007/BF02352290. [DOI] [PubMed] [Google Scholar]
  24. Schultz D. W., Yarus M. Transfer RNA mutation and the malleability of the genetic code. J Mol Biol. 1994 Feb 4;235(5):1377–1380. doi: 10.1006/jmbi.1994.1094. [DOI] [PubMed] [Google Scholar]
  25. Szathmáry E. Coding coenzyme handles: a hypothesis for the origin of the genetic code. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9916–9920. doi: 10.1073/pnas.90.21.9916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Szathmáry E. Four letters in the genetic alphabet: a frozen evolutionary optimum? Proc Biol Sci. 1991 Aug 22;245(1313):91–99. doi: 10.1098/rspb.1991.0093. [DOI] [PubMed] [Google Scholar]
  27. Szathmáry E. What is the optimum size for the genetic alphabet? Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2614–2618. doi: 10.1073/pnas.89.7.2614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Szathmáry E., Zintzaras E. A statistical test of hypotheses on the organization and origin of the genetic code. J Mol Evol. 1992 Sep;35(3):185–189. doi: 10.1007/BF00178593. [DOI] [PubMed] [Google Scholar]
  29. Taylor F. J., Coates D. The code within the codons. Biosystems. 1989;22(3):177–187. doi: 10.1016/0303-2647(89)90059-2. [DOI] [PubMed] [Google Scholar]
  30. Woese C. R., Dugre D. H., Dugre S. A., Kondo M., Saxinger W. C. On the fundamental nature and evolution of the genetic code. Cold Spring Harb Symp Quant Biol. 1966;31:723–736. doi: 10.1101/sqb.1966.031.01.093. [DOI] [PubMed] [Google Scholar]
  31. Woese C. R. On the evolution of the genetic code. Proc Natl Acad Sci U S A. 1965 Dec;54(6):1546–1552. doi: 10.1073/pnas.54.6.1546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wong J. T. A co-evolution theory of the genetic code. Proc Natl Acad Sci U S A. 1975 May;72(5):1909–1912. doi: 10.1073/pnas.72.5.1909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wong J. T., Bronskill P. M. Inadequacy of prebiotic synthesis as origin of proteinous amino acids. J Mol Evol. 1979 Jul 18;13(2):115–125. doi: 10.1007/BF01732867. [DOI] [PubMed] [Google Scholar]
  34. Wong J. T. Evolution of the genetic code. Microbiol Sci. 1988 Jun;5(6):174–181. [PubMed] [Google Scholar]
  35. Wong J. T. Role of minimization of chemical distances between amino acids in the evolution of the genetic code. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1083–1086. doi: 10.1073/pnas.77.2.1083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wong J. T. The evolution of a universal genetic code. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2336–2340. doi: 10.1073/pnas.73.7.2336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yarus M., Schultz D. W. Further comments on codon reassignment. Response. J Mol Evol. 1997 Jul;45(1):3–6. doi: 10.1007/pl00006171. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES