Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 Nov 22;265(1411):2171–2175. doi: 10.1098/rspb.1998.0555

Injury-induced expression of endothelial nitric oxide synthase by glial and microglial cells in the leech central nervous system within minutes after injury.

O T Shafer 1, A Chen 1, S M Kumar 1, K J Muller 1, C L Sahley 1
PMCID: PMC1689516  PMID: 9872006

Abstract

It is known that nitric oxide (NO) is produced by injured tissues of the mammalian central nervous system (CNS) within days of injury. The aim of the present experiments was to determine the cellular synthesis of NO in the CNS immediately after injury, using the CNS of the leech which is capable of synapse regeneration, as a step towards understanding the role of NO in nerve repair. We report that within minutes after crushing the nerve cord of the leech, the region of damage stained histochemically for NADPH diaphorase, which is indicative of nitric oxide synthase (NOS) activity, and was immunoreactive for endothelial NOS (eNOS). On immunoblots of leech CNS extract, the same antibody detected a band with a relative molecular mass of 140,000, which is approximately the size of vertebrate eNOS. Cells expressing eNOS immunoreactivity as a result of injury were identified after freezing nerve cords, a procedure that produced less tissue distortion than mechanical crushing. Immunoreactive cells included connective glia and some microglia. Calmodulin was necessary for the eNOS immunoreactivity: it was blocked by calmodulin antagonist W7 (25 microM), but not by similar concentrations of the less potent calmodulin antagonist W12. Thus in the leech CNS, in which axon and synapse regeneration is successful, an increase in NOS activity at lesions appears to be among the earliest responses to injury and may be important for repair of axons.

Full Text

The Full Text of this article is available as a PDF (169.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blottner D., Grozdanovic Z., Gossrau R. Histochemistry of nitric oxide synthase in the nervous system. Histochem J. 1995 Oct;27(10):785–811. [PubMed] [Google Scholar]
  2. Collins G. H., West N. R., Parmely J. D., Samson F. M., Ward D. A. The histopathology of freezing injury to the rat spinal cord. A light microscope study. I. Early degenerative changes. J Neuropathol Exp Neurol. 1986 Nov;45(6):721–741. doi: 10.1097/00005072-198611000-00009. [DOI] [PubMed] [Google Scholar]
  3. Dinerman J. L., Dawson T. M., Schell M. J., Snowman A., Snyder S. H. Endothelial nitric oxide synthase localized to hippocampal pyramidal cells: implications for synaptic plasticity. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4214–4218. doi: 10.1073/pnas.91.10.4214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Elphick M. R., Kemenes G., Staras K., O'Shea M. Behavioral role for nitric oxide in chemosensory activation of feeding in a mollusc. J Neurosci. 1995 Nov;15(11):7653–7664. doi: 10.1523/JNEUROSCI.15-11-07653.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gelperin A. Nitric oxide mediates network oscillations of olfactory interneurons in a terrestrial mollusc. Nature. 1994 May 5;369(6475):61–63. doi: 10.1038/369061a0. [DOI] [PubMed] [Google Scholar]
  6. Hess D. T., Patterson S. I., Smith D. S., Skene J. H. Neuronal growth cone collapse and inhibition of protein fatty acylation by nitric oxide. Nature. 1993 Dec 9;366(6455):562–565. doi: 10.1038/366562a0. [DOI] [PubMed] [Google Scholar]
  7. Huang P. L., Dawson T. M., Bredt D. S., Snyder S. H., Fishman M. C. Targeted disruption of the neuronal nitric oxide synthase gene. Cell. 1993 Dec 31;75(7):1273–1286. doi: 10.1016/0092-8674(93)90615-w. [DOI] [PubMed] [Google Scholar]
  8. Jaffrey S. R., Snyder S. H. PIN: an associated protein inhibitor of neuronal nitric oxide synthase. Science. 1996 Nov 1;274(5288):774–777. doi: 10.1126/science.274.5288.774. [DOI] [PubMed] [Google Scholar]
  9. Keating H. H., Sahley C. L. Localization of the myomodulin-like immunoreactivity in the leech CNS. J Neurobiol. 1996 Jul;30(3):374–384. doi: 10.1002/(SICI)1097-4695(199607)30:3<374::AID-NEU6>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  10. Koprowski H., Zheng Y. M., Heber-Katz E., Fraser N., Rorke L., Fu Z. F., Hanlon C., Dietzschold B. In vivo expression of inducible nitric oxide synthase in experimentally induced neurologic diseases. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3024–3027. doi: 10.1073/pnas.90.7.3024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lamas S., Marsden P. A., Li G. K., Tempst P., Michel T. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6348–6352. doi: 10.1073/pnas.89.14.6348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Leake L. D., Moroz L. L. Putative nitric oxide synthase (NOS)-containing cells in the central nervous system of the leech, Hirudo medicinalis: NADPH-diaphorase histochemistry. Brain Res. 1996 Jun 3;723(1-2):115–124. doi: 10.1016/0006-8993(96)00220-x. [DOI] [PubMed] [Google Scholar]
  13. Martínez A. Nitric oxide synthase in invertebrates. Histochem J. 1995 Oct;27(10):770–776. [PubMed] [Google Scholar]
  14. Matsumoto T., Nakane M., Pollock J. S., Kuk J. E., Förstermann U. A correlation between soluble brain nitric oxide synthase and NADPH-diaphorase activity is only seen after exposure of the tissue to fixative. Neurosci Lett. 1993 May 28;155(1):61–64. doi: 10.1016/0304-3940(93)90673-9. [DOI] [PubMed] [Google Scholar]
  15. Mazur P. Cryobiology: the freezing of biological systems. Science. 1970 May 22;168(3934):939–949. doi: 10.1126/science.168.3934.939. [DOI] [PubMed] [Google Scholar]
  16. Nicholls J. G., Baylor D. A. Specific modalities and receptive fields of sensory neurons in CNS of the leech. J Neurophysiol. 1968 Sep;31(5):740–756. doi: 10.1152/jn.1968.31.5.740. [DOI] [PubMed] [Google Scholar]
  17. O'Dell T. J., Huang P. L., Dawson T. M., Dinerman J. L., Snyder S. H., Kandel E. R., Fishman M. C. Endothelial NOS and the blockade of LTP by NOS inhibitors in mice lacking neuronal NOS. Science. 1994 Jul 22;265(5171):542–546. doi: 10.1126/science.7518615. [DOI] [PubMed] [Google Scholar]
  18. Paakkari I., Lindsberg P. Nitric oxide in the central nervous system. Ann Med. 1995 Jun;27(3):369–377. doi: 10.3109/07853899509002590. [DOI] [PubMed] [Google Scholar]
  19. Rentería R. C., Constantine-Paton M. Exogenous nitric oxide causes collapse of retinal ganglion cell axonal growth cones in vitro. J Neurobiol. 1996 Apr;29(4):415–428. doi: 10.1002/(SICI)1097-4695(199604)29:4<415::AID-NEU1>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  20. Verge V. M., Xu Z., Xu X. J., Wiesenfeld-Hallin Z., Hökfelt T. Marked increase in nitric oxide synthase mRNA in rat dorsal root ganglia after peripheral axotomy: in situ hybridization and functional studies. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11617–11621. doi: 10.1073/pnas.89.23.11617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Vizzard M. A., Erdman S. L., de Groat W. C. Increased expression of neuronal nitric oxide synthase (NOS) in visceral neurons after nerve injury. J Neurosci. 1995 May;15(5 Pt 2):4033–4045. doi: 10.1523/JNEUROSCI.15-05-04033.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. von Bernhardi R., Muller K. J. Repair of the central nervous system: lessons from lesions in leeches. J Neurobiol. 1995 Jul;27(3):353–366. doi: 10.1002/neu.480270308. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES