Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 Dec 22;265(1413):2421–2425. doi: 10.1098/rspb.1998.0593

The geographical spread of influenza.

E Bonabeau 1, L Toubiana 1, A Flahault 1
PMCID: PMC1689537  PMID: 9921681

Abstract

How infectious diseases spread in space within one cycle of an epidemic is an important question that has received considerable theoretical attention. There are, however, few empirical studies to support theoretical approaches, because data are scarce. Weekly reports obtained since 1984 from a network of general practitioners spanning the entire French territory allows the analysis of the spatio-temporal dynamics of influenza over a fine spatial scale. This analysis indicates that diffusion over long distances, possibly due to global transportation systems, is so quick that homogeneous global mixing occurs before the epidemic builds up within infected patches. A simple model in which the total number of cases is given by the empirical time-series and cases are randomly assigned to patches according to the population weight of the patches exhibits the same spatio-temporal properties as real epidemic cycles: homogeneous mixing models constitute appropriate descriptions, except in the vicinity of the epidemic's peak, where geographic heterogeneities play a role.

Full Text

The Full Text of this article is available as a PDF (149.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. M. The Croonian Lecture, 1994. Populations, infectious disease and immunity: a very nonlinear world. Philos Trans R Soc Lond B Biol Sci. 1994 Dec 29;346(1318):457–505. doi: 10.1098/rstb.1994.0162. [DOI] [PubMed] [Google Scholar]
  2. Bolker B. M., Grenfell B. T. Chaos and biological complexity in measles dynamics. Proc Biol Sci. 1993 Jan 22;251(1330):75–81. doi: 10.1098/rspb.1993.0011. [DOI] [PubMed] [Google Scholar]
  3. Dietz K. The estimation of the basic reproduction number for infectious diseases. Stat Methods Med Res. 1993;2(1):23–41. doi: 10.1177/096228029300200103. [DOI] [PubMed] [Google Scholar]
  4. Ferguson N. M., Nokes D. J., Anderson R. M. Dynamical complexity in age-structured models of the transmission of the measles virus: epidemiological implications at high levels of vaccine uptake. Math Biosci. 1996 Dec;138(2):101–130. doi: 10.1016/s0025-5564(96)00127-7. [DOI] [PubMed] [Google Scholar]
  5. Flahault A., Deguen S., Valleron A. J. A mathematical model for the European spread of influenza. Eur J Epidemiol. 1994 Aug;10(4):471–474. doi: 10.1007/BF01719679. [DOI] [PubMed] [Google Scholar]
  6. Flahault A., Letrait S., Blin P., Hazout S., Ménarés J., Valleron A. J. Modelling the 1985 influenza epidemic in France. Stat Med. 1988 Nov;7(11):1147–1155. doi: 10.1002/sim.4780071107. [DOI] [PubMed] [Google Scholar]
  7. Grenfell B. T., Kleczkowski A., Gilligan C. A., Bolker B. M. Spatial heterogeneity, nonlinear dynamics and chaos in infectious diseases. Stat Methods Med Res. 1995 Jun;4(2):160–183. doi: 10.1177/096228029500400205. [DOI] [PubMed] [Google Scholar]
  8. Hethcote H. W. An immunization model for a heterogeneous population. Theor Popul Biol. 1978 Dec;14(3):338–349. doi: 10.1016/0040-5809(78)90011-4. [DOI] [PubMed] [Google Scholar]
  9. MACLAREN W. R., EISENBERG B. C., FRANK D. E., KESSLER J. Reactions to insect allergens. The incidence of response to testing among allergic and nonallergic persons. Calif Med. 1960 Oct;93:224–226. [PMC free article] [PubMed] [Google Scholar]
  10. Noble J. V. Geographic and temporal development of plagues. Nature. 1974 Aug 30;250(5469):726–729. doi: 10.1038/250726a0. [DOI] [PubMed] [Google Scholar]
  11. Valleron A. J., Bouvet E., Garnerin P., Ménarès J., Heard I., Letrait S., Lefaucheux J. A computer network for the surveillance of communicable diseases: the French experiment. Am J Public Health. 1986 Nov;76(11):1289–1292. doi: 10.2105/ajph.76.11.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Woolhouse M. E., Dye C., Etard J. F., Smith T., Charlwood J. D., Garnett G. P., Hagan P., Hii J. L., Ndhlovu P. D., Quinnell R. J. Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):338–342. doi: 10.1073/pnas.94.1.338. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES