Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1999 Jan 7;266(1414):63–73. doi: 10.1098/rspb.1999.0605

Evolutionary relationships of Metazoa within the eukaryotes based on molecular data from Porifera.

J Schütze 1, A Krasko 1, M R Custodio 1, S M Efremova 1, I M Müller 1, W E Müller 1
PMCID: PMC1689648  PMID: 10081159

Abstract

Recent molecular data provide strong support for the view that all metazoan phyla, including Porifera, are of monophyletic origin. The relationship of Metazoa, including the Porifera, to Plantae, Fungi and unicellular eukaryotes has only rarely been studied by using cDNAs coding for proteins. Sequence data from rDNA suggested a relationship of Porifera to unicellular eukaryotes (choanoflagellates). However, ultrastructural studies of choanocytes did not support these findings. In the present study, we compared amino acid sequences that are found in a variety of metazoans (including sponges) with those of Plantae, Fungi and unicellular eukaryotes, to obtain an answer to this question. We used the four sequences from 70 kDa heat-shock proteins, the serine-threonine kinase domain found in protein kinases, beta-tubulin and calmodulin. The latter two sequences were deduced from cDNAs, isolated from the sponge Geodia cydonium for the phylogenetic analyses presented. These revealed that the sponge molecules were grouped into the same branch as the Metazoa, which is statistically (significantly) separated from those branches that comprise the sequences from Fungi, Plantae and unicellular eukaryotes. From our molecular data it seems evident that the unicellular eukaryotes existed at an earlier stage of evolution, and the Plantae and especially the Fungi and the Metazoa only appeared later.

Full Text

The Full Text of this article is available as a PDF (445.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babu Y. S., Sack J. S., Greenhough T. J., Bugg C. E., Means A. R., Cook W. J. Three-dimensional structure of calmodulin. Nature. 1985 May 2;315(6014):37–40. doi: 10.1038/315037a0. [DOI] [PubMed] [Google Scholar]
  2. Baldauf S. L., Palmer J. D. Animals and fungi are each other's closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11558–11562. doi: 10.1073/pnas.90.24.11558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gething M. J., Sambrook J. Protein folding in the cell. Nature. 1992 Jan 2;355(6355):33–45. doi: 10.1038/355033a0. [DOI] [PubMed] [Google Scholar]
  4. Günther E., Walter L. Genetic aspects of the hsp70 multigene family in vertebrates. Experientia. 1994 Nov 30;50(11-12):987–1001. doi: 10.1007/BF01923453. [DOI] [PubMed] [Google Scholar]
  5. Hanson P. I., Schulman H. Neuronal Ca2+/calmodulin-dependent protein kinases. Annu Rev Biochem. 1992;61:559–601. doi: 10.1146/annurev.bi.61.070192.003015. [DOI] [PubMed] [Google Scholar]
  6. Hirabayashi J., Kasai K. The family of metazoan metal-independent beta-galactoside-binding lectins: structure, function and molecular evolution. Glycobiology. 1993 Aug;3(4):297–304. doi: 10.1093/glycob/3.4.297. [DOI] [PubMed] [Google Scholar]
  7. Ikura M., Clore G. M., Gronenborn A. M., Zhu G., Klee C. B., Bax A. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science. 1992 May 1;256(5057):632–638. doi: 10.1126/science.1585175. [DOI] [PubMed] [Google Scholar]
  8. Keeling P. J., Doolittle W. F. Alpha-tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family. Mol Biol Evol. 1996 Dec;13(10):1297–1305. doi: 10.1093/oxfordjournals.molbev.a025576. [DOI] [PubMed] [Google Scholar]
  9. Knoll A. H. The early evolution of eukaryotes: a geological perspective. Science. 1992 May 1;256(5057):622–627. doi: 10.1126/science.1585174. [DOI] [PubMed] [Google Scholar]
  10. Kozak M. An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol. 1991 Nov;115(4):887–903. doi: 10.1083/jcb.115.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kruse M., Gamulin V., Cetkovic H., Pancer Z., Müller I. M., Müller W. E. Molecular evolution of the metazoan protein kinase C multigene family. J Mol Evol. 1996 Oct;43(4):374–383. doi: 10.1007/BF02339011. [DOI] [PubMed] [Google Scholar]
  12. Kruse M., Leys S. P., Müller I. M., Müller W. E. Phylogenetic position of the Hexactinellida within the phylum Porifera based on the amino acid sequence of the protein kinase C from Rhabdocalyptus dawsoni. J Mol Evol. 1998 Jun;46(6):721–728. doi: 10.1007/pl00006353. [DOI] [PubMed] [Google Scholar]
  13. Kruse M., Müller I. M., Müller W. E. Early evolution of metazoan serine/threonine and tyrosine kinases: identification of selected kinases in marine sponges. Mol Biol Evol. 1997 Dec;14(12):1326–1334. doi: 10.1093/oxfordjournals.molbev.a025742. [DOI] [PubMed] [Google Scholar]
  14. Kumar S., Rzhetsky A. Evolutionary relationships of eukaryotic kingdoms. J Mol Evol. 1996 Feb;42(2):183–193. doi: 10.1007/BF02198844. [DOI] [PubMed] [Google Scholar]
  15. Li CW, Chen JY, Hua TE. Precambrian sponges with cellular structures . Science. 1998 Feb 6;279(5352):879–882. doi: 10.1126/science.279.5352.879. [DOI] [PubMed] [Google Scholar]
  16. Linse K., Mandelkow E. M. The GTP-binding peptide of beta-tubulin. Localization by direct photoaffinity labeling and comparison with nucleotide-binding proteins. J Biol Chem. 1988 Oct 15;263(29):15205–15210. [PubMed] [Google Scholar]
  17. Müller W. E. Molecular phylogeny of Eumetazoa: genes in sponges (Porifera) give evidence for monophyly of animals. Prog Mol Subcell Biol. 1998;19:89–132. doi: 10.1007/978-3-642-48745-3_4. [DOI] [PubMed] [Google Scholar]
  18. Müller W. E., Müller I. M., Gamulin V. On the monophyletic evolution of the metazoa. Braz J Med Biol Res. 1994 Sep;27(9):2083–2096. [PubMed] [Google Scholar]
  19. Müller W. E., Schäcke H. Characterization of the receptor protein-tyrosine kinase gene from the marine sponge Geodia cydonium. Prog Mol Subcell Biol. 1996;17:183–208. doi: 10.1007/978-3-642-80106-8_9. [DOI] [PubMed] [Google Scholar]
  20. Nogales E., Wolf S. G., Downing K. H. Structure of the alpha beta tubulin dimer by electron crystallography. Nature. 1998 Jan 8;391(6663):199–203. doi: 10.1038/34465. [DOI] [PubMed] [Google Scholar]
  21. Pfeifer K., Haasemann M., Gamulin V., Bretting H., Fahrenholz F., Müller W. E. S-type lectins occur also in invertebrates: high conservation of the carbohydrate recognition domain in the lectin genes from the marine sponge Geodia cydonium. Glycobiology. 1993 Apr;3(2):179–184. doi: 10.1093/glycob/3.2.179. [DOI] [PubMed] [Google Scholar]
  22. Subjeck J. R., Shyy T. T. Stress protein systems of mammalian cells. Am J Physiol. 1986 Jan;250(1 Pt 1):C1–17. doi: 10.1152/ajpcell.1986.250.1.C1. [DOI] [PubMed] [Google Scholar]
  23. Sullivan K. F. Structure and utilization of tubulin isotypes. Annu Rev Cell Biol. 1988;4:687–716. doi: 10.1146/annurev.cb.04.110188.003351. [DOI] [PubMed] [Google Scholar]
  24. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Valentine J. W., Erwin D. H., Jablonski D. Developmental evolution of metazoan bodyplans: the fossil evidence. Dev Biol. 1996 Feb 1;173(2):373–381. doi: 10.1006/dbio.1996.0033. [DOI] [PubMed] [Google Scholar]
  26. Wainright P. O., Hinkle G., Sogin M. L., Stickel S. K. Monophyletic origins of the metazoa: an evolutionary link with fungi. Science. 1993 Apr 16;260(5106):340–342. doi: 10.1126/science.8469985. [DOI] [PubMed] [Google Scholar]
  27. Zarkower D., Stephenson P., Sheets M., Wickens M. The AAUAAA sequence is required both for cleavage and for polyadenylation of simian virus 40 pre-mRNA in vitro. Mol Cell Biol. 1986 Jul;6(7):2317–2323. doi: 10.1128/mcb.6.7.2317. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES