Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1999 Mar 7;266(1418):499–507. doi: 10.1098/rspb.1999.0665

Monocular focal retinal lesions induce short-term topographic plasticity in adult cat visual cortex.

M B Calford 1, L M Schmid 1, M G Rosa 1
PMCID: PMC1689800  PMID: 10189714

Abstract

Electrophysiological recording in primary visual cortex (VI) was performed both prior to and in the hours immediately following the creation of a discrete retinal lesion in one eye with an argon laser. Lesion projection zones (LPZs; 21-64 mm2) were defined in the visual cortex by mapping the extent of the lesion onto the topographic representation in cortex. There was no effect on neuronal responses to the unlesioned eye or on its topographic representation. However, within hours of producing the retinal lesion, receptive fields obtained from stimulation of the lesioned eye were displaced onto areas surrounding the scotoma and were enlarged compared with the corresponding field obtained through the normal eye. The proportion of such responsive recording sites increased during the experiment such that 8-11 hours post-lesion, 56% of recording sites displayed neurons responsive to the lesioned eye. This is an equivalent proportion to that previously reported with long-term recovery (three weeks to three months). Responsive neurons were evident as far as 2.5 mm inside the border of the LPZ. The reorganization of the lesioned eye representation produced binocular disparities as great as 15 degrees, suggesting interactions between sites in VI up to 5.5 mm apart.

Full Text

The Full Text of this article is available as a PDF (244.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albus K. A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat. I. The precision of the topography. Exp Brain Res. 1975 Dec 22;24(2):159–179. doi: 10.1007/BF00234061. [DOI] [PubMed] [Google Scholar]
  2. Blakemore C., Pettigrew J. D. Eye dominance in the visual cortex. Nature. 1970 Jan 31;225(5231):426–429. doi: 10.1038/225426a0. [DOI] [PubMed] [Google Scholar]
  3. Byrne J. A., Calford M. B. Short-term expansion of receptive fields in rat primary somatosensory cortex after hindpaw digit denervation. Brain Res. 1991 Nov 29;565(2):218–224. doi: 10.1016/0006-8993(91)91652-h. [DOI] [PubMed] [Google Scholar]
  4. Calford M. B., Tweedale R. Acute changes in cutaneous receptive fields in primary somatosensory cortex after digit denervation in adult flying fox. J Neurophysiol. 1991 Feb;65(2):178–187. doi: 10.1152/jn.1991.65.2.178. [DOI] [PubMed] [Google Scholar]
  5. Calford M. B., Tweedale R. Immediate and chronic changes in responses of somatosensory cortex in adult flying-fox after digit amputation. Nature. 1988 Mar 31;332(6163):446–448. doi: 10.1038/332446a0. [DOI] [PubMed] [Google Scholar]
  6. Chino Y. M., Kaas J. H., Smith E. L., 3rd, Langston A. L., Cheng H. Rapid reorganization of cortical maps in adult cats following restricted deafferentation in retina. Vision Res. 1992 May;32(5):789–796. doi: 10.1016/0042-6989(92)90021-a. [DOI] [PubMed] [Google Scholar]
  7. Chino Y. M., Smith E. L., 3rd, Kaas J. H., Sasaki Y., Cheng H. Receptive-field properties of deafferentated visual cortical neurons after topographic map reorganization in adult cats. J Neurosci. 1995 Mar;15(3 Pt 2):2417–2433. doi: 10.1523/JNEUROSCI.15-03-02417.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chu Y., Humphrey M. F., Alder V. V., Constable I. J. Immunocytochemical localization of basic fibroblast growth factor and glial fibrillary acidic protein after laser photocoagulation in the Royal College of Surgeons rat. Aust N Z J Ophthalmol. 1998 Feb;26(1):87–96. [PubMed] [Google Scholar]
  9. Darian-Smith C., Gilbert C. D. Axonal sprouting accompanies functional reorganization in adult cat striate cortex. Nature. 1994 Apr 21;368(6473):737–740. doi: 10.1038/368737a0. [DOI] [PubMed] [Google Scholar]
  10. Darian-Smith C., Gilbert C. D. Topographic reorganization in the striate cortex of the adult cat and monkey is cortically mediated. J Neurosci. 1995 Mar;15(3 Pt 1):1631–1647. doi: 10.1523/JNEUROSCI.15-03-01631.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dreher Z., Robinson S. R., Distler C. Müller cells in vascular and avascular retinae: a survey of seven mammals. J Comp Neurol. 1992 Sep 1;323(1):59–80. doi: 10.1002/cne.903230106. [DOI] [PubMed] [Google Scholar]
  12. Eysel U. T., Gonzalez-Aguilar F., Mayer U. Time-dependent decrease in the extent of visual deafferentation in the lateral geniculate nucleus of adult cats with small retinal lesions. Exp Brain Res. 1981;41(3-4):256–263. doi: 10.1007/BF00238882. [DOI] [PubMed] [Google Scholar]
  13. Gilbert C. D., Wiesel T. N. Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J Neurosci. 1989 Jul;9(7):2432–2442. doi: 10.1523/JNEUROSCI.09-07-02432.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gilbert C. D., Wiesel T. N. Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex. Nature. 1979 Jul 12;280(5718):120–125. doi: 10.1038/280120a0. [DOI] [PubMed] [Google Scholar]
  15. Gilbert C. D., Wiesel T. N. Receptive field dynamics in adult primary visual cortex. Nature. 1992 Mar 12;356(6365):150–152. doi: 10.1038/356150a0. [DOI] [PubMed] [Google Scholar]
  16. HUBEL D. H., WIESEL T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962 Jan;160:106–154. doi: 10.1113/jphysiol.1962.sp006837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Heinen S. J., Skavenski A. A. Recovery of visual responses in foveal V1 neurons following bilateral foveal lesions in adult monkey. Exp Brain Res. 1991;83(3):670–674. doi: 10.1007/BF00229845. [DOI] [PubMed] [Google Scholar]
  18. Horton J. C., Hocking D. R. Monocular core zones and binocular border strips in primate striate cortex revealed by the contrasting effects of enucleation, eyelid suture, and retinal laser lesions on cytochrome oxidase activity. J Neurosci. 1998 Jul 15;18(14):5433–5455. doi: 10.1523/JNEUROSCI.18-14-05433.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Humphrey M. F., Chu Y., Mann K., Rakoczy P. Retinal GFAP and bFGF expression after multiple argon laser photocoagulation injuries assessed by both immunoreactivity and mRNA levels. Exp Eye Res. 1997 Mar;64(3):361–369. doi: 10.1006/exer.1996.0219. [DOI] [PubMed] [Google Scholar]
  20. Kaas J. H., Krubitzer L. A., Chino Y. M., Langston A. L., Polley E. H., Blair N. Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science. 1990 Apr 13;248(4952):229–231. doi: 10.1126/science.2326637. [DOI] [PubMed] [Google Scholar]
  21. Kelahan A. M., Doetsch G. S. Time-dependent changes in the functional organization of somatosensory cerebral cortex following digit amputation in adult raccoons. Somatosens Res. 1984;2(1):49–81. [PubMed] [Google Scholar]
  22. Levick W. R., Thibos L. N. Neurophysiology of central retinal degeneration in cat. Vis Neurosci. 1993 May-Jun;10(3):499–509. doi: 10.1017/s0952523800004715. [DOI] [PubMed] [Google Scholar]
  23. Luhmann H. J., Greuel J. M., Singer W. Horizontal Interactions in Cat Striate Cortex: III. Ectopic Receptive Fields and Transient Exuberance of Tangential Interactions. Eur J Neurosci. 1990;2(4):369–377. doi: 10.1111/j.1460-9568.1990.tb00428.x. [DOI] [PubMed] [Google Scholar]
  24. Luhmann H. J., Singer W., Martínez-Millán L. Horizontal Interactions in Cat Striate Cortex: I. Anatomical Substrate and Postnatal Development. Eur J Neurosci. 1990;2(4):344–357. doi: 10.1111/j.1460-9568.1990.tb00426.x. [DOI] [PubMed] [Google Scholar]
  25. Merzenich M. M., Kaas J. H., Wall J. T., Sur M., Nelson R. J., Felleman D. J. Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys. Neuroscience. 1983 Nov;10(3):639–665. doi: 10.1016/0306-4522(83)90208-7. [DOI] [PubMed] [Google Scholar]
  26. Pettigrew J. D., Cooper M. L., Blasdel G. G. Improved use of tapetal reflection for eye-position monitoring. Invest Ophthalmol Vis Sci. 1979 May;18(5):490–495. [PubMed] [Google Scholar]
  27. Pow D. V., Robinson S. R. Glutamate in some retinal neurons is derived solely from glia. Neuroscience. 1994 May;60(2):355–366. doi: 10.1016/0306-4522(94)90249-6. [DOI] [PubMed] [Google Scholar]
  28. Rosa M. G., Schmid L. M., Calford M. B. Responsiveness of cat area 17 after monocular inactivation: limitation of topographic plasticity in adult cortex. J Physiol. 1995 Feb 1;482(Pt 3):589–608. doi: 10.1113/jphysiol.1995.sp020543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schmid L. M., Rosa M. G., Calford M. B., Ambler J. S. Visuotopic reorganization in the primary visual cortex of adult cats following monocular and binocular retinal lesions. Cereb Cortex. 1996 May-Jun;6(3):388–405. doi: 10.1093/cercor/6.3.388. [DOI] [PubMed] [Google Scholar]
  30. Schmid L. M., Rosa M. G., Calford M. B. Retinal detachment induces massive immediate reorganization in visual cortex. Neuroreport. 1995 Jun 19;6(9):1349–1353. doi: 10.1097/00001756-199506090-00030. [DOI] [PubMed] [Google Scholar]
  31. Stone J. A quantitative analysis of the distribution of ganglion cells in the cat's retina. J Comp Neurol. 1965 Jun;124(3):337–352. doi: 10.1002/cne.901240305. [DOI] [PubMed] [Google Scholar]
  32. Tassignon M. J., Stempels N., Nguyen-Legros J., De Wilde F., Brihaye M. The effect of wavelength on glial fibrillary acidic protein immunoreactivity in laser-induced lesions in rabbit retina. Graefes Arch Clin Exp Ophthalmol. 1991;229(4):380–388. doi: 10.1007/BF00170698. [DOI] [PubMed] [Google Scholar]
  33. Turnbull B. G., Rasmusson D. D. Acute effects of total or partial digit denervation on raccoon somatosensory cortex. Somatosens Mot Res. 1990;7(4):365–389. doi: 10.3109/08990229009144714. [DOI] [PubMed] [Google Scholar]
  34. Tusa R. J., Palmer L. A., Rosenquist A. C. The retinotopic organization of area 17 (striate cortex) in the cat. J Comp Neurol. 1978 Jan 15;177(2):213–235. doi: 10.1002/cne.901770204. [DOI] [PubMed] [Google Scholar]
  35. Wong-Riley M. Columnar cortico-cortical interconnections within the visual system of the squirrel and macaque monkeys. Brain Res. 1979 Feb 23;162(2):201–217. doi: 10.1016/0006-8993(79)90284-1. [DOI] [PubMed] [Google Scholar]
  36. Yamamoto C., Ogata N., Yi X., Takahashi K., Miyashiro M., Yamada H., Uyama M., Matsuzaki K. Immunolocalization of basic fibroblast growth factor during wound repair in rat retina after laser photocoagulation. Graefes Arch Clin Exp Ophthalmol. 1996 Nov;234(11):695–702. doi: 10.1007/BF00292356. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES