Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1999 Apr 22;266(1421):859–867. doi: 10.1098/rspb.1999.0716

The effects of local spatial structure on epidemiological invasions.

M J Keeling 1
PMCID: PMC1689913  PMID: 10343409

Abstract

Predicting the likely success of invasions is vitally important in ecology and especially epidemiology. Whether an organism can successfully invade and persist in the short-term is highly dependent on the spatial correlations that develop in the early stages of invasion. By modelling the correlations between individuals, we are able to understand the role of spatial heterogeneity in invasion dynamics without the need for large-scale computer simulations. Here, a natural methodology is developed for modelling the behaviour of individuals in a fixed network. This formulation is applied to the spread of a disease through a structured network to determine invasion thresholds and some statistical properties of a single epidemic.

Full Text

The Full Text of this article is available as a PDF (271.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altmann M. Susceptible-infected-removed epidemic models with dynamic partnerships. J Math Biol. 1995;33(6):661–675. doi: 10.1007/BF00298647. [DOI] [PubMed] [Google Scholar]
  2. Ball F., Nåsell I. The shape of the size distribution of an epidemic in a finite population. Math Biosci. 1994 Oct;123(2):167–181. doi: 10.1016/0025-5564(94)90010-8. [DOI] [PubMed] [Google Scholar]
  3. De Jong M. C., Diekmann O., Heesterbeek J. A. The computation of R0 for discrete-time epidemic models with dynamic heterogeneity. Math Biosci. 1994 Jan;119(1):97–114. doi: 10.1016/0025-5564(94)90006-x. [DOI] [PubMed] [Google Scholar]
  4. Dickman R. Kinetic phase transitions in a surface-reaction model: Mean-field theory. Phys Rev A Gen Phys. 1986 Nov;34(5):4246–4250. doi: 10.1103/physreva.34.4246. [DOI] [PubMed] [Google Scholar]
  5. Diekmann O., Heesterbeek J. A., Metz J. A. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J Math Biol. 1990;28(4):365–382. doi: 10.1007/BF00178324. [DOI] [PubMed] [Google Scholar]
  6. Dietz K., Hadeler K. P. Epidemiological models for sexually transmitted diseases. J Math Biol. 1988;26(1):1–25. doi: 10.1007/BF00280169. [DOI] [PubMed] [Google Scholar]
  7. Grenfell B. T., Lonergan M. E., Harwood J. Quantitative investigations of the epidemiology of phocine distemper virus (PDV) in European common seal populations. Sci Total Environ. 1992 Apr 20;115(1-2):15–29. doi: 10.1016/0048-9697(92)90029-r. [DOI] [PubMed] [Google Scholar]
  8. Islam M. N., O'Shaughnessy C. D., Smith B. A random graph model for the final-size distribution of household infections. 1996 Apr 15-May 15Stat Med. 15(7-9):837–843. doi: 10.1002/(sici)1097-0258(19960415)15:7/9<837::aid-sim253>3.0.co;2-v. [DOI] [PubMed] [Google Scholar]
  9. Keeling M. J., Grenfell B. T. Disease extinction and community size: modeling the persistence of measles. Science. 1997 Jan 3;275(5296):65–67. doi: 10.1126/science.275.5296.65. [DOI] [PubMed] [Google Scholar]
  10. Keeling M. J., Rand D. A., Morris A. J. Correlation models for childhood epidemics. Proc Biol Sci. 1997 Aug 22;264(1385):1149–1156. doi: 10.1098/rspb.1997.0159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kermack W. O., McKendrick A. G. Contributions to the mathematical theory of epidemics--I. 1927. Bull Math Biol. 1991;53(1-2):33–55. doi: 10.1007/BF02464423. [DOI] [PubMed] [Google Scholar]
  12. Levin S. A., Durrett R. From individuals to epidemics. Philos Trans R Soc Lond B Biol Sci. 1996 Nov 29;351(1347):1615–1621. doi: 10.1098/rstb.1996.0145. [DOI] [PubMed] [Google Scholar]
  13. Sato K., Matsuda H., Sasaki A. Pathogen invasion and host extinction in lattice structured populations. J Math Biol. 1994;32(3):251–268. doi: 10.1007/BF00163881. [DOI] [PubMed] [Google Scholar]
  14. Watts D. J., Strogatz S. H. Collective dynamics of 'small-world' networks. Nature. 1998 Jun 4;393(6684):440–442. doi: 10.1038/30918. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES