Abstract
In early postnatal development, during the period of synapse formation, gamma-aminobutyric acid (GABA) and glycine, the main inhibitory transmitters in the adult brain, paradoxically excite and depolarize neuronal membranes by an outward flux of chloride. The mechanisms of chloride homeostasis are not fully understood. It is known that in adult neurons intracellular chloride accumulation is prevented by a particular type of chloride channel, the ClC-2. This channel strongly rectifies in the inward direction at potentials negative to ECl thus ensuring chloride efflux. We have tested the hypothesis that in the developing hippocampus, a differential expression or regulation of ClC-2 channels may contribute to the depolarizing action of GABA and glycine. We have cloned a truncated form of ClC-2 (ClC-2nh) from the neonatal hippocampus which lacks the 157 bp corresponding to exon 2. In situ hybridization experiments show that ClC-2nh is the predominant form of ClC-2 mRNA in the neonatal brain. ClC-2nh mRNA is unable to encode a full-length protein due to a frameshift, consequently it does not induce any currents upon injection into Xenopus oocytes. Low expression of the full-length ClC-2 channel, could alter chloride homeostasis, lead to accumulation of [Cl-]i and thereby contribute to the depolarizing action of GABA and glycine during early development.
Full Text
The Full Text of this article is available as a PDF (472.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ben-Ari Y., Cherubini E., Corradetti R., Gaiarsa J. L. Giant synaptic potentials in immature rat CA3 hippocampal neurones. J Physiol. 1989 Sep;416:303–325. doi: 10.1113/jphysiol.1989.sp017762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cherubini E., Gaiarsa J. L., Ben-Ari Y. GABA: an excitatory transmitter in early postnatal life. Trends Neurosci. 1991 Dec;14(12):515–519. doi: 10.1016/0166-2236(91)90003-d. [DOI] [PubMed] [Google Scholar]
- Chu S., Zeitlin P. L. Alternative mRNA splice variants of the rat ClC-2 chloride channel gene are expressed in lung: genomic sequence and organization of ClC-2. Nucleic Acids Res. 1997 Oct 15;25(20):4153–4159. doi: 10.1093/nar/25.20.4153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daniels R., Adjaye J., Bolton V., Monk M. Detection of a novel splice variant of the hypoxanthine-guanine phosphoribosyl transferase gene in human oocytes and preimplantation embryos: implications for a RT-PCR-based preimplantation diagnosis of Lesch-Nyhan syndrome. Mol Hum Reprod. 1998 Aug;4(8):785–789. doi: 10.1093/molehr/4.8.785. [DOI] [PubMed] [Google Scholar]
- Gegelashvili G., Schousboe A. High affinity glutamate transporters: regulation of expression and activity. Mol Pharmacol. 1997 Jul;52(1):6–15. doi: 10.1124/mol.52.1.6. [DOI] [PubMed] [Google Scholar]
- Goodman C. S., Shatz C. J. Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell. 1993 Jan;72 (Suppl):77–98. doi: 10.1016/s0092-8674(05)80030-3. [DOI] [PubMed] [Google Scholar]
- Gründer S., Thiemann A., Pusch M., Jentsch T. J. Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature. 1992 Dec 24;360(6406):759–762. doi: 10.1038/360759a0. [DOI] [PubMed] [Google Scholar]
- Ito S., Cherubini E. Strychnine-sensitive glycine responses of neonatal rat hippocampal neurones. J Physiol. 1991;440:67–83. doi: 10.1113/jphysiol.1991.sp018696. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jentsch T. J. Chloride channels: a molecular perspective. Curr Opin Neurobiol. 1996 Jun;6(3):303–310. doi: 10.1016/s0959-4388(96)80112-7. [DOI] [PubMed] [Google Scholar]
- Jentsch T. J., Günther W. Chloride channels: an emerging molecular picture. Bioessays. 1997 Feb;19(2):117–126. doi: 10.1002/bies.950190206. [DOI] [PubMed] [Google Scholar]
- Jin J. P., Wang J., Ogut O. Developmentally regulated muscle type-specific alternative splicing of the COOH-terminal variable region of fast skeletal muscle troponin T and an aberrant splicing pathway to encode a mutant COOH-terminus. Biochem Biophys Res Commun. 1998 Jan 26;242(3):540–544. doi: 10.1006/bbrc.1997.8006. [DOI] [PubMed] [Google Scholar]
- Jordt S. E., Jentsch T. J. Molecular dissection of gating in the ClC-2 chloride channel. EMBO J. 1997 Apr 1;16(7):1582–1592. doi: 10.1093/emboj/16.7.1582. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaila K., Voipio J., Paalasmaa P., Pasternack M., Deisz R. A. The role of bicarbonate in GABAA receptor-mediated IPSPs of rat neocortical neurones. J Physiol. 1993 May;464:273–289. doi: 10.1113/jphysiol.1993.sp019634. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaneda M., Farrant M., Cull-Candy S. G. Whole-cell and single-channel currents activated by GABA and glycine in granule cells of the rat cerebellum. J Physiol. 1995 Jun 1;485(Pt 2):419–435. doi: 10.1113/jphysiol.1995.sp020739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Misgeld U., Deisz R. A., Dodt H. U., Lux H. D. The role of chloride transport in postsynaptic inhibition of hippocampal neurons. Science. 1986 Jun 13;232(4756):1413–1415. doi: 10.1126/science.2424084. [DOI] [PubMed] [Google Scholar]
- Ohno H., Goto S., Taki S., Shirasawa T., Nakano H., Miyatake S., Aoe T., Ishida Y., Maeda H., Shirai T. Targeted disruption of the CD3 eta locus causes high lethality in mice: modulation of Oct-1 transcription on the opposite strand. EMBO J. 1994 Mar 1;13(5):1157–1165. doi: 10.1002/j.1460-2075.1994.tb06365.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Owens D. F., Boyce L. H., Davis M. B., Kriegstein A. R. Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J Neurosci. 1996 Oct 15;16(20):6414–6423. doi: 10.1523/JNEUROSCI.16-20-06414.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Payne J. A. Functional characterization of the neuronal-specific K-Cl cotransporter: implications for [K+]o regulation. Am J Physiol. 1997 Nov;273(5 Pt 1):C1516–C1525. doi: 10.1152/ajpcell.1997.273.5.C1516. [DOI] [PubMed] [Google Scholar]
- Reichling D. B., Kyrozis A., Wang J., MacDermott A. B. Mechanisms of GABA and glycine depolarization-induced calcium transients in rat dorsal horn neurons. J Physiol. 1994 May 1;476(3):411–421. doi: 10.1113/jphysiol.1994.sp020142. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rivera C., Voipio J., Payne J. A., Ruusuvuori E., Lahtinen H., Lamsa K., Pirvola U., Saarma M., Kaila K. The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature. 1999 Jan 21;397(6716):251–255. doi: 10.1038/16697. [DOI] [PubMed] [Google Scholar]
- Smith R. L., Clayton G. H., Wilcox C. L., Escudero K. W., Staley K. J. Differential expression of an inwardly rectifying chloride conductance in rat brain neurons: a potential mechanism for cell-specific modulation of postsynaptic inhibition. J Neurosci. 1995 May;15(5 Pt 2):4057–4067. doi: 10.1523/JNEUROSCI.15-05-04057.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Staley K. J., Soldo B. L., Proctor W. R. Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science. 1995 Aug 18;269(5226):977–981. doi: 10.1126/science.7638623. [DOI] [PubMed] [Google Scholar]
- Staley K., Smith R., Schaack J., Wilcox C., Jentsch T. J. Alteration of GABAA receptor function following gene transfer of the CLC-2 chloride channel. Neuron. 1996 Sep;17(3):543–551. doi: 10.1016/s0896-6273(00)80186-5. [DOI] [PubMed] [Google Scholar]
- Staley K. The role of an inwardly rectifying chloride conductance in postsynaptic inhibition. J Neurophysiol. 1994 Jul;72(1):273–284. doi: 10.1152/jn.1994.72.1.273. [DOI] [PubMed] [Google Scholar]
- Thiemann A., Gründer S., Pusch M., Jentsch T. J. A chloride channel widely expressed in epithelial and non-epithelial cells. Nature. 1992 Mar 5;356(6364):57–60. doi: 10.1038/356057a0. [DOI] [PubMed] [Google Scholar]
- Wu W. L., Ziskind-Conhaim L., Sweet M. A. Early development of glycine- and GABA-mediated synapses in rat spinal cord. J Neurosci. 1992 Oct;12(10):3935–3945. doi: 10.1523/JNEUROSCI.12-10-03935.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]