Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1999 Jul 7;266(1426):1397–1401. doi: 10.1098/rspb.1999.0793

A model for the sequential dominance of antigenic variants in African trypanosome infections.

S A Frank 1
PMCID: PMC1690072  PMID: 10445294

Abstract

Trypanosoma brucei infects various domestic and wild mammals in equatorial Africa. The parasite's genome contains several hundred alternative and highly diverged surface antigens, of which only a single one is expressed in any cell. Individual cells occasionally change expression of their surface antigen, allowing them to escape immune surveillance. These switches appear to occur in a partly random way, creating a diverse set of antigenic variants. In spite of this diversity, the parasitaemia develops as a series of outbreaks, each outbreak dominated by relatively few antigenic types. Host-specific immunity eventually clears the dominant antigenic types and a new outbreak follows from antigenic types that have apparently been present all along at low frequency. This pattern of sequential dominance by different antigenic types remains unexplained. I use a mathematical model of parasitaemia and host immunity to show that small variations in the rate at which each type switches to other types can explain the observations. My model shows that randomly chosen switch rates do not provide sufficiently ordered parasitaemias to match the observations. Instead, minor modifications of switch rates by natural selection are required to develop a sequence of ordered parasitaemias.

Full Text

The Full Text of this article is available as a PDF (502.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agur Z., Abiri D., Van der Ploeg L. H. Ordered appearance of antigenic variants of African trypanosomes explained in a mathematical model based on a stochastic switch process and immune-selection against putative switch intermediates. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9626–9630. doi: 10.1073/pnas.86.23.9626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agur Z. Mathematical models for African trypanosomiasis. Parasitol Today. 1992 Apr;8(4):128–129. doi: 10.1016/0169-4758(92)90280-f. [DOI] [PubMed] [Google Scholar]
  3. Antia R., Nowak M. A., Anderson R. M. Antigenic variation and the within-host dynamics of parasites. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):985–989. doi: 10.1073/pnas.93.3.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aslam N., Turner C. M. The relationship of variable antigen expression and population growth rates in Trypanosoma brucei. Parasitol Res. 1992;78(8):661–664. doi: 10.1007/BF00931517. [DOI] [PubMed] [Google Scholar]
  5. Barry J. D. Antigenic variation during Trypanosoma vivax infections of different host species. Parasitology. 1986 Feb;92(Pt 1):51–65. doi: 10.1017/s0031182000063447. [DOI] [PubMed] [Google Scholar]
  6. Barry J. D. The relative significance of mechanisms of antigenic variation in African trypanosomes. Parasitol Today. 1997 Jun;13(6):212–218. doi: 10.1016/s0169-4758(97)01039-9. [DOI] [PubMed] [Google Scholar]
  7. Barry J. D., Turner C. M. The dynamics of antigenic variation and growth of African trypanosomes. Parasitol Today. 1991 Aug;7(8):207–211. doi: 10.1016/0169-4758(91)90143-c. [DOI] [PubMed] [Google Scholar]
  8. Borst P. Molecular genetics of antigenic variation. Immunol Today. 1991 Mar;12(3):A29–A33. doi: 10.1016/S0167-5699(05)80009-X. [DOI] [PubMed] [Google Scholar]
  9. Borst P., Rudenko G., Blundell P. A., van Leeuwen F., Cross M. A., McCulloch R., Gerrits H., Chaves I. M. Mechanisms of antigenic variation in African trypanosomes. Behring Inst Mitt. 1997 Mar;(99):1–15. [PubMed] [Google Scholar]
  10. Capbern A., Giroud C., Baltz T., Mattern P. Trypanosoma equiperdum: etude des variations antigéniques au cours de la trypanosomose experimentale du lapin. Exp Parasitol. 1977 Jun;42(1):6–13. doi: 10.1016/0014-4894(77)90055-8. [DOI] [PubMed] [Google Scholar]
  11. Deitsch K. W., Moxon E. R., Wellems T. E. Shared themes of antigenic variation and virulence in bacterial, protozoal, and fungal infections. Microbiol Mol Biol Rev. 1997 Sep;61(3):281–293. doi: 10.1128/mmbr.61.3.281-293.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gray A. R. Antigenic variation in a strain of Trypanosoma brucei transmitted by Glossina morsitans and G. palpalis. J Gen Microbiol. 1965 Nov;41(2):195–214. doi: 10.1099/00221287-41-2-195. [DOI] [PubMed] [Google Scholar]
  13. Kosinski R. J. Antigenic variation in trypanosomes: a computer analysis of variant order. Parasitology. 1980 Apr;80(2):343–357. doi: 10.1017/s0031182000000809. [DOI] [PubMed] [Google Scholar]
  14. Miller E. N., Turner M. J. Analysis of antigenic types appearing in first relapse populations of clones of Trypanosoma brucei. Parasitology. 1981 Feb;82(1):63–80. doi: 10.1017/s0031182000041871. [DOI] [PubMed] [Google Scholar]
  15. Muñoz-Jordán J. L., Davies K. P., Cross G. A. Stable expression of mosaic coats of variant surface glycoproteins in Trypanosoma brucei. Science. 1996 Jun 21;272(5269):1795–1797. doi: 10.1126/science.272.5269.1795. [DOI] [PubMed] [Google Scholar]
  16. Nash T. E. Antigenic variation in Giardia lamblia and the host's immune response. Philos Trans R Soc Lond B Biol Sci. 1997 Sep 29;352(1359):1369–1375. doi: 10.1098/rstb.1997.0122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. O'Connor R. M., Lane T. J., Stroup S. E., Allred D. R. Characterization of a variant erythrocyte surface antigen (VESA1) expressed by Babesia bovis during antigenic variation. Mol Biochem Parasitol. 1997 Nov;89(2):259–270. doi: 10.1016/s0166-6851(97)00125-4. [DOI] [PubMed] [Google Scholar]
  18. Pays E., Nolan D. P. Expression and function of surface proteins in Trypanosoma brucei. Mol Biochem Parasitol. 1998 Mar 1;91(1):3–36. doi: 10.1016/s0166-6851(97)00183-7. [DOI] [PubMed] [Google Scholar]
  19. Seed J. R. Competition among serologically different clones of Trypanosoma brucei gambiense in vivo. J Protozool. 1978 Nov;25(4):526–529. doi: 10.1111/j.1550-7408.1978.tb04179.x. [DOI] [PubMed] [Google Scholar]
  20. Serkin C. D., Seifert H. S. Frequency of pilin antigenic variation in Neisseria gonorrhoeae. J Bacteriol. 1998 Apr;180(7):1955–1958. doi: 10.1128/jb.180.7.1955-1958.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Turner C. M., Barry J. D. High frequency of antigenic variation in Trypanosoma brucei rhodesiense infections. Parasitology. 1989 Aug;99(Pt 1):67–75. doi: 10.1017/s0031182000061035. [DOI] [PubMed] [Google Scholar]
  22. Turner C. M. The rate of antigenic variation in fly-transmitted and syringe-passaged infections of Trypanosoma brucei. FEMS Microbiol Lett. 1997 Aug 1;153(1):227–231. doi: 10.1111/j.1574-6968.1997.tb10486.x. [DOI] [PubMed] [Google Scholar]
  23. Vickerman K. Trypanosome sociology and antigenic variation. Parasitology. 1989;99 (Suppl):S37–S47. doi: 10.1017/s0031182000083402. [DOI] [PubMed] [Google Scholar]
  24. Zhang J. R., Hardham J. M., Barbour A. G., Norris S. J. Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell. 1997 Apr 18;89(2):275–285. doi: 10.1016/s0092-8674(00)80206-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES