Abstract
Layer III pyramidal neurons were injected with Lucifer yellow in tangential cortical slices taken from the inferior temporal cortex (area TE) and the superior temporal polysensory (STP) area of the macaque monkey. Basal dendritic field areas of layer III pyramidal neurons in area STP are significantly larger, and their dendritic arborizations more complex, than those of cells in area TE. Moreover, the dendritic fields of layer III pyramidal neurons in both STP and TE are many times larger and more complex than those in areas forming 'lower' stages in cortical visual processing, such as the first (V1), second (V2), fourth (V4) and middle temporal (MT) visual areas. By combining data on spine density with those of Sholl analyses, we were able to estimate the average number of spines in the basal dendritic field of layer III pyramidal neurons in each area. These calculations revealed a 13-fold difference in the number of spines in the basal dendritic field between areas STP and V1 in animals of similar age. The large differences in complexity of the same kind of neuron in different visual areas go against arguments for isopotentiality of different cortical regions and provide a basis that allows pyramidal neurons in temporal areas TE and STP to integrate more inputs than neurons in more caudal visual areas.
Full Text
The Full Text of this article is available as a PDF (526.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amir Y., Harel M., Malach R. Cortical hierarchy reflected in the organization of intrinsic connections in macaque monkey visual cortex. J Comp Neurol. 1993 Aug 1;334(1):19–46. doi: 10.1002/cne.903340103. [DOI] [PubMed] [Google Scholar]
- Beaulieu C., Colonnier M. A laminar analysis of the number of round-asymmetrical and flat-symmetrical synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat. J Comp Neurol. 1985 Jan 8;231(2):180–189. doi: 10.1002/cne.902310206. [DOI] [PubMed] [Google Scholar]
- Beaulieu C., Kisvarday Z., Somogyi P., Cynader M., Cowey A. Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17). Cereb Cortex. 1992 Jul-Aug;2(4):295–309. doi: 10.1093/cercor/2.4.295. [DOI] [PubMed] [Google Scholar]
- Beaulieu C., Somogyi P. Targets and Quantitative Distribution of GABAergic Synapses in the Visual Cortex of the Cat. Eur J Neurosci. 1990;2(4):296–303. doi: 10.1111/j.1460-9568.1990.tb00421.x. [DOI] [PubMed] [Google Scholar]
- Bruce C., Desimone R., Gross C. G. Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol. 1981 Aug;46(2):369–384. doi: 10.1152/jn.1981.46.2.369. [DOI] [PubMed] [Google Scholar]
- Buhl E. H., Schlote W. Intracellular lucifer yellow staining and electron microscopy of neurones in slices of fixed epitumourous human cortical tissue. Acta Neuropathol. 1987;75(2):140–146. doi: 10.1007/BF00687074. [DOI] [PubMed] [Google Scholar]
- Buhl E. H., Singer W. The callosal projection in cat visual cortex as revealed by a combination of retrograde tracing and intracellular injection. Exp Brain Res. 1989;75(3):470–476. doi: 10.1007/BF00249898. [DOI] [PubMed] [Google Scholar]
- Cusick C. G., Seltzer B., Cola M., Griggs E. Chemoarchitectonics and corticocortical terminations within the superior temporal sulcus of the rhesus monkey: evidence for subdivisions of superior temporal polysensory cortex. J Comp Neurol. 1995 Sep 25;360(3):513–535. doi: 10.1002/cne.903600312. [DOI] [PubMed] [Google Scholar]
- DeFelipe J., Conti F., Van Eyck S. L., Manzoni T. Demonstration of glutamate-positive axon terminals forming asymmetric synapses in cat neocortex. Brain Res. 1988 Jul 5;455(1):162–165. doi: 10.1016/0006-8993(88)90127-8. [DOI] [PubMed] [Google Scholar]
- DeFelipe J., Fariñas I. The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol. 1992 Dec;39(6):563–607. doi: 10.1016/0301-0082(92)90015-7. [DOI] [PubMed] [Google Scholar]
- Desimone R., Albright T. D., Gross C. G., Bruce C. Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci. 1984 Aug;4(8):2051–2062. doi: 10.1523/JNEUROSCI.04-08-02051.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Desimone R., Gross C. G. Visual areas in the temporal cortex of the macaque. Brain Res. 1979 Dec 14;178(2-3):363–380. doi: 10.1016/0006-8993(79)90699-1. [DOI] [PubMed] [Google Scholar]
- Einstein G. Intracellular injection of lucifer yellow into cortical neurons in lightly fixed sections and its application to human autopsy material. J Neurosci Methods. 1988 Dec;26(2):95–103. doi: 10.1016/0165-0270(88)90157-4. [DOI] [PubMed] [Google Scholar]
- Elston G. N., Pow D. V., Calford M. B. Neuronal composition and morphology in layer IV of two vibrissal barrel subfields of rat cortex. Cereb Cortex. 1997 Jul-Aug;7(5):422–431. doi: 10.1093/cercor/7.5.422. [DOI] [PubMed] [Google Scholar]
- Elston G. N., Rosa M. G., Calford M. B. Comparison of dendritic fields of layer III pyramidal neurons in striate and extrastriate visual areas of the marmoset: a Lucifer yellow intracellular injection. Cereb Cortex. 1996 Nov-Dec;6(6):807–813. doi: 10.1093/cercor/6.6.807. [DOI] [PubMed] [Google Scholar]
- Elston G. N., Rosa M. G. Complex dendritic fields of pyramidal cells in the frontal eye field of the macaque monkey: comparison with parietal areas 7a and LIP. Neuroreport. 1998 Jan 5;9(1):127–131. doi: 10.1097/00001756-199801050-00025. [DOI] [PubMed] [Google Scholar]
- Elston G. N., Rosa M. G. Morphological variation of layer III pyramidal neurones in the occipitotemporal pathway of the macaque monkey visual cortex. Cereb Cortex. 1998 Apr-May;8(3):278–294. doi: 10.1093/cercor/8.3.278. [DOI] [PubMed] [Google Scholar]
- Elston G. N., Rosa M. G. The occipitoparietal pathway of the macaque monkey: comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. Cereb Cortex. 1997 Jul-Aug;7(5):432–452. doi: 10.1093/cercor/7.5.432. [DOI] [PubMed] [Google Scholar]
- Felleman D. J., Van Essen D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991 Jan-Feb;1(1):1–47. doi: 10.1093/cercor/1.1.1-a. [DOI] [PubMed] [Google Scholar]
- Fujita I., Fujita T. Intrinsic Connections in the macaque inferior temporal cortex. J Comp Neurol. 1996 May 13;368(4):467–486. doi: 10.1002/(SICI)1096-9861(19960513)368:4<467::AID-CNE1>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
- GRAY E. G. Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat. 1959 Oct;93:420–433. [PMC free article] [PubMed] [Google Scholar]
- Gross C. G., Bender D. B., Rocha-Miranda C. E. Visual receptive fields of neurons in inferotemporal cortex of the monkey. Science. 1969 Dec 5;166(3910):1303–1306. doi: 10.1126/science.166.3910.1303. [DOI] [PubMed] [Google Scholar]
- Gross C. G., Rocha-Miranda C. E., Bender D. B. Visual properties of neurons in inferotemporal cortex of the Macaque. J Neurophysiol. 1972 Jan;35(1):96–111. doi: 10.1152/jn.1972.35.1.96. [DOI] [PubMed] [Google Scholar]
- Hendry S. H., Calkins D. J. Neuronal chemistry and functional organization in the primate visual system. Trends Neurosci. 1998 Aug;21(8):344–349. doi: 10.1016/s0166-2236(98)01245-4. [DOI] [PubMed] [Google Scholar]
- Hietanen J. K., Perrett D. I. Motion sensitive cells in the macaque superior temporal polysensory area. I. Lack of response to the sight of the animal's own limb movement. Exp Brain Res. 1993;93(1):117–128. doi: 10.1007/BF00227786. [DOI] [PubMed] [Google Scholar]
- Hikosaka K., Iwai E., Saito H., Tanaka K. Polysensory properties of neurons in the anterior bank of the caudal superior temporal sulcus of the macaque monkey. J Neurophysiol. 1988 Nov;60(5):1615–1637. doi: 10.1152/jn.1988.60.5.1615. [DOI] [PubMed] [Google Scholar]
- Jones E. G., Powell T. P. Morphological variations in the dendritic spines of the neocortex. J Cell Sci. 1969 Sep;5(2):509–529. doi: 10.1242/jcs.5.2.509. [DOI] [PubMed] [Google Scholar]
- Kharazia V. N., Weinberg R. J. Glutamate in terminals of thalamocortical fibers in rat somatic sensory cortex. Neurosci Lett. 1993 Jul 23;157(2):162–166. doi: 10.1016/0304-3940(93)90727-3. [DOI] [PubMed] [Google Scholar]
- Lund J. S., Boothe R. G., Lund R. D. Development of neurons in the visual cortex (area 17) of the monkey (Macaca nemestrina): a Golgi study from fetal day 127 to postnatal maturity. J Comp Neurol. 1977 Nov 15;176(2):149–188. doi: 10.1002/cne.901760203. [DOI] [PubMed] [Google Scholar]
- Lund J. S., Yoshioka T., Levitt J. B. Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. Cereb Cortex. 1993 Mar-Apr;3(2):148–162. doi: 10.1093/cercor/3.2.148. [DOI] [PubMed] [Google Scholar]
- Maunsell J. H., Newsome W. T. Visual processing in monkey extrastriate cortex. Annu Rev Neurosci. 1987;10:363–401. doi: 10.1146/annurev.ne.10.030187.002051. [DOI] [PubMed] [Google Scholar]
- Mistlin A. J., Perrett D. I. Visual and somatosensory processing in the macaque temporal cortex: the role of 'expectation'. Exp Brain Res. 1990;82(2):437–450. doi: 10.1007/BF00231263. [DOI] [PubMed] [Google Scholar]
- Miyashita Y., Date A., Okuno H. Configurational encoding of complex visual forms by single neurons of monkey temporal cortex. Neuropsychologia. 1993 Oct;31(10):1119–1131. doi: 10.1016/0028-3932(93)90036-y. [DOI] [PubMed] [Google Scholar]
- Oram M. W., Perrett D. I. Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey. J Neurophysiol. 1996 Jul;76(1):109–129. doi: 10.1152/jn.1996.76.1.109. [DOI] [PubMed] [Google Scholar]
- Perrett D. I., Rolls E. T., Caan W. Visual neurones responsive to faces in the monkey temporal cortex. Exp Brain Res. 1982;47(3):329–342. doi: 10.1007/BF00239352. [DOI] [PubMed] [Google Scholar]
- Perrett D. I., Smith P. A., Mistlin A. J., Chitty A. J., Head A. S., Potter D. D., Broennimann R., Milner A. D., Jeeves M. A. Visual analysis of body movements by neurones in the temporal cortex of the macaque monkey: a preliminary report. Behav Brain Res. 1985 Aug;16(2-3):153–170. doi: 10.1016/0166-4328(85)90089-0. [DOI] [PubMed] [Google Scholar]
- Perrett D. I., Smith P. A., Potter D. D., Mistlin A. J., Head A. S., Milner A. D., Jeeves M. A. Visual cells in the temporal cortex sensitive to face view and gaze direction. Proc R Soc Lond B Biol Sci. 1985 Jan 22;223(1232):293–317. doi: 10.1098/rspb.1985.0003. [DOI] [PubMed] [Google Scholar]
- Peters A., Cifuentes J. M., Sethares C. The organization of pyramidal cells in area 18 of the rhesus monkey. Cereb Cortex. 1997 Jul-Aug;7(5):405–421. doi: 10.1093/cercor/7.5.405. [DOI] [PubMed] [Google Scholar]
- Rolls E. T. Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical visual areas. Philos Trans R Soc Lond B Biol Sci. 1992 Jan 29;335(1273):11–21. doi: 10.1098/rstb.1992.0002. [DOI] [PubMed] [Google Scholar]
- SHOLL D. A. Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat. 1953 Oct;87(4):387–406. [PMC free article] [PubMed] [Google Scholar]
- Seltzer B., Pandya D. N. Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res. 1978 Jun 23;149(1):1–24. doi: 10.1016/0006-8993(78)90584-x. [DOI] [PubMed] [Google Scholar]
- Tanaka K. Inferotemporal cortex and object vision. Annu Rev Neurosci. 1996;19:109–139. doi: 10.1146/annurev.ne.19.030196.000545. [DOI] [PubMed] [Google Scholar]
- Weller R. E. Two cortical visual systems in Old World and New World primates. Prog Brain Res. 1988;75:293–306. doi: 10.1016/s0079-6123(08)60487-2. [DOI] [PubMed] [Google Scholar]
- Zeki S. M. Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. J Physiol. 1978 Apr;277:273–290. doi: 10.1113/jphysiol.1978.sp012272. [DOI] [PMC free article] [PubMed] [Google Scholar]