Abstract
Noradrenaline (NA)-stimulated beta-adrenoreceptors activate adenylate cyclase via excitatory G-proteins (Gs). Activated adenylate cyclase in turn promotes the production of cAMP. Critical roles of cAMP-dependent protein kinase A (PKA) in divergent cellular functions have been shown, including memory, learning and neural plasticity. Ocular dominance plasticity (ODP) is strongly expressed in early postnatal life and usually absent in the mature visual cortex. Here, we asked whether the activation of cAMP-dependent PKA could restore ODP to the aplastic visual cortex of adult cats. Concurrent with brief monocular deprivation, each of the following cAMP-related drugs was directly and continuously infused in the adult visual cortex: cholera toxin (a Gs-protein stimulant), forskolin (a Gs-protein-independent activator of adenylate cyclase) and dibutyryl cAMP (a cAMP analogue). We found that the ocular dominance distribution became W-shaped, the proportion of binocular cells being significantly lower than that in respective controls. We concluded that the activation of cAMP cascades rapidly restores ODP to the adult visual cortex, though moderately. The finding further extends the original hypothesis that the NA-beta-adrenoreceptors system is a neurochemical mechanism of cortical plasticity.
Full Text
The Full Text of this article is available as a PDF (212.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barlow H. B., Blakemore C., Pettigrew J. D. The neural mechanism of binocular depth discrimination. J Physiol. 1967 Nov;193(2):327–342. doi: 10.1113/jphysiol.1967.sp008360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bear M. F., Kleinschmidt A., Gu Q. A., Singer W. Disruption of experience-dependent synaptic modifications in striate cortex by infusion of an NMDA receptor antagonist. J Neurosci. 1990 Mar;10(3):909–925. doi: 10.1523/JNEUROSCI.10-03-00909.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bear M. F., Singer W. Modulation of visual cortical plasticity by acetylcholine and noradrenaline. Nature. 1986 Mar 13;320(6058):172–176. doi: 10.1038/320172a0. [DOI] [PubMed] [Google Scholar]
- Blakemore C., Pettigrew J. D. Eye dominance in the visual cortex. Nature. 1970 Jan 31;225(5231):426–429. doi: 10.1038/225426a0. [DOI] [PubMed] [Google Scholar]
- Boulton C. L., McCrohan C. R., O'Shaughnessy C. T. Cyclic AMP analogues increase excitability and enhance epileptiform activity in rat neocortex in vitro. Eur J Pharmacol. 1993 May 12;236(1):131–136. doi: 10.1016/0014-2999(93)90235-a. [DOI] [PubMed] [Google Scholar]
- Chavez-Noriega L. E., Stevens C. F. Increased transmitter release at excitatory synapses produced by direct activation of adenylate cyclase in rat hippocampal slices. J Neurosci. 1994 Jan;14(1):310–317. doi: 10.1523/JNEUROSCI.14-01-00310.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper D. M., Mons N., Karpen J. W. Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature. 1995 Mar 30;374(6521):421–424. doi: 10.1038/374421a0. [DOI] [PubMed] [Google Scholar]
- Davis R. L. Physiology and biochemistry of Drosophila learning mutants. Physiol Rev. 1996 Apr;76(2):299–317. doi: 10.1152/physrev.1996.76.2.299. [DOI] [PubMed] [Google Scholar]
- Daw N. W., Fox K., Sato H., Czepita D. Critical period for monocular deprivation in the cat visual cortex. J Neurophysiol. 1992 Jan;67(1):197–202. doi: 10.1152/jn.1992.67.1.197. [DOI] [PubMed] [Google Scholar]
- Dunwiddie T. V., Taylor M., Heginbotham L. R., Proctor W. R. Long-term increases in excitability in the CA1 region of rat hippocampus induced by beta-adrenergic stimulation: possible mediation by cAMP. J Neurosci. 1992 Feb;12(2):506–517. doi: 10.1523/JNEUROSCI.12-02-00506.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox K., Daw N. W. Do NMDA receptors have a critical function in visual cortical plasticity? Trends Neurosci. 1993 Mar;16(3):116–122. doi: 10.1016/0166-2236(93)90136-a. [DOI] [PubMed] [Google Scholar]
- Frank D. A., Greenberg M. E. CREB: a mediator of long-term memory from mollusks to mammals. Cell. 1994 Oct 7;79(1):5–8. doi: 10.1016/0092-8674(94)90394-8. [DOI] [PubMed] [Google Scholar]
- Frey U., Huang Y. Y., Kandel E. R. Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science. 1993 Jun 11;260(5114):1661–1664. doi: 10.1126/science.8389057. [DOI] [PubMed] [Google Scholar]
- Frey U., Morris R. G. Synaptic tagging and long-term potentiation. Nature. 1997 Feb 6;385(6616):533–536. doi: 10.1038/385533a0. [DOI] [PubMed] [Google Scholar]
- Gereau R. W., 4th, Conn P. J. A cyclic AMP-dependent form of associative synaptic plasticity induced by coactivation of beta-adrenergic receptors and metabotropic glutamate receptors in rat hippocampus. J Neurosci. 1994 May;14(5 Pt 2):3310–3318. doi: 10.1523/JNEUROSCI.14-05-03310.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gill D. M. Mechanism of action of cholera toxin. Adv Cyclic Nucleotide Res. 1977;8:85–118. [PubMed] [Google Scholar]
- Gordon B., Mitchell B., Mohtadi K., Roth E., Tseng Y., Turk F. Lesions of nonvisual inputs affect plasticity, norepinephrine content, and acetylcholine content of visual cortex. J Neurophysiol. 1990 Dec;64(6):1851–1860. doi: 10.1152/jn.1990.64.6.1851. [DOI] [PubMed] [Google Scholar]
- Gu Q., Singer W. Effects of intracortical infusion of anticholinergic drugs on neuronal plasticity in kitten striate cortex. Eur J Neurosci. 1993 May 1;5(5):475–485. doi: 10.1111/j.1460-9568.1993.tb00514.x. [DOI] [PubMed] [Google Scholar]
- Gu Q., Singer W. Involvement of serotonin in developmental plasticity of kitten visual cortex. Eur J Neurosci. 1995 Jun 1;7(6):1146–1153. doi: 10.1111/j.1460-9568.1995.tb01104.x. [DOI] [PubMed] [Google Scholar]
- HUBEL D. H., WIESEL T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962 Jan;160:106–154. doi: 10.1113/jphysiol.1962.sp006837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hadcock J. R., Malbon C. C. Agonist regulation of gene expression of adrenergic receptors and G proteins. J Neurochem. 1993 Jan;60(1):1–9. doi: 10.1111/j.1471-4159.1993.tb05816.x. [DOI] [PubMed] [Google Scholar]
- Heggelund P., Imamura K., Kasamatsu T. Reduced binocularity in the noradrenaline-infused striate cortex of acutely anesthetized and paralyzed, otherwise normal cats. Exp Brain Res. 1987;68(3):593–605. doi: 10.1007/BF00249802. [DOI] [PubMed] [Google Scholar]
- Hensch T. K., Fagiolini M., Mataga N., Stryker M. P., Baekkeskov S., Kash S. F. Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science. 1998 Nov 20;282(5393):1504–1508. doi: 10.1126/science.282.5393.1504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hensch T. K., Stryker M. P. Ocular dominance plasticity under metabotropic glutamate receptor blockade. Science. 1996 Apr 26;272(5261):554–557. doi: 10.1126/science.272.5261.554. [DOI] [PubMed] [Google Scholar]
- Hopkins W. F., Johnston D. Noradrenergic enhancement of long-term potentiation at mossy fiber synapses in the hippocampus. J Neurophysiol. 1988 Feb;59(2):667–687. doi: 10.1152/jn.1988.59.2.667. [DOI] [PubMed] [Google Scholar]
- Huang Y. Y., Kandel E. R. Modulation of both the early and the late phase of mossy fiber LTP by the activation of beta-adrenergic receptors. Neuron. 1996 Mar;16(3):611–617. doi: 10.1016/s0896-6273(00)80080-x. [DOI] [PubMed] [Google Scholar]
- Huang Y. Y., Li X. C., Kandel E. R. cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase. Cell. 1994 Oct 7;79(1):69–79. doi: 10.1016/0092-8674(94)90401-4. [DOI] [PubMed] [Google Scholar]
- Hubel D. H., Wiesel T. N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol. 1970 Feb;206(2):419–436. doi: 10.1113/jphysiol.1970.sp009022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imamura K., Kasamatsu T. Acutely induced shift in ocular dominance during brief monocular exposure: effects of cortical noradrenaline infusion. Neurosci Lett. 1988 May 16;88(1):57–62. doi: 10.1016/0304-3940(88)90315-1. [DOI] [PubMed] [Google Scholar]
- Imamura K., Kasamatsu T. Interaction of noradrenergic and cholinergic systems in regulation of ocular dominance plasticity. Neurosci Res. 1989 Aug;6(6):519–536. doi: 10.1016/0168-0102(89)90042-4. [DOI] [PubMed] [Google Scholar]
- Imamura K., Kasamatsu T. Ocular dominance plasticity restored by NA infusion to aplastic visual cortex of anesthetized and paralyzed kittens. Exp Brain Res. 1991;87(2):309–318. doi: 10.1007/BF00231848. [DOI] [PubMed] [Google Scholar]
- Imamura K., Kasamatsu T. Ocular dominance plasticity: usefulness of anesthetized and paralyzed preparations. Jpn J Physiol. 1991;41(4):521–549. doi: 10.2170/jjphysiol.41.521. [DOI] [PubMed] [Google Scholar]
- Imamura K., Mataga N., Watanabe Y. Gliotoxin-induced suppression of ocular dominance plasticity in kitten visual cortex. Neurosci Res. 1993 Feb;16(2):117–124. doi: 10.1016/0168-0102(93)90078-5. [DOI] [PubMed] [Google Scholar]
- Jones K. R., Spear P. D., Tong L. Critical periods for effects of monocular deprivation: differences between striate and extrastriate cortex. J Neurosci. 1984 Oct;4(10):2543–2552. doi: 10.1523/JNEUROSCI.04-10-02543.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kasamatsu T., Imamura K., Mataga N., Hartveit E., Heggelund U., Heggelund P. Roles of N-methyl-D-aspartate receptors in ocular dominance plasticity in developing visual cortex: re-evaluation. Neuroscience. 1998 Feb;82(3):687–700. doi: 10.1016/s0306-4522(97)00222-4. [DOI] [PubMed] [Google Scholar]
- Kasamatsu T., Itakura T., Jonsson G. Intracortical spread of exogenous catecholamines: effective concentration for modifying cortical plasticity. J Pharmacol Exp Ther. 1981 Jun;217(3):841–850. [PubMed] [Google Scholar]
- Kasamatsu T. Norepinephrine hypothesis for visual cortical plasticity: thesis, antithesis, and recent development. Curr Top Dev Biol. 1987;21:367–389. doi: 10.1016/s0070-2153(08)60144-1. [DOI] [PubMed] [Google Scholar]
- Kasamatsu T., Pettigrew J. D., Ary M. Cortical recovery from effects of monocular deprivation: acceleration with norepinephrine and suppression with 6-hydroxydopamine. J Neurophysiol. 1981 Feb;45(2):254–266. doi: 10.1152/jn.1981.45.2.254. [DOI] [PubMed] [Google Scholar]
- Kasamatsu T., Pettigrew J. D., Ary M. Restoration of visual cortical plasticity by local microperfusion of norepinephrine. J Comp Neurol. 1979 May 1;185(1):163–181. doi: 10.1002/cne.901850110. [DOI] [PubMed] [Google Scholar]
- Kasamatsu T., Pettigrew J. D. Depletion of brain catecholamines: failure of ocular dominance shift after monocular occlusion in kittens. Science. 1976 Oct 8;194(4261):206–209. doi: 10.1126/science.959850. [DOI] [PubMed] [Google Scholar]
- Kasamatsu T., Schmidt E. K. Continuous and direct infusion of drug solutions in the brain of awake animals: implementation, strengths and pitfalls. Brain Res Brain Res Protoc. 1997 Feb;1(1):57–69. doi: 10.1016/s1385-299x(96)00008-6. [DOI] [PubMed] [Google Scholar]
- Kasamatsu T., Shirokawa T. Involvement of beta-adrenoreceptors in the shift of ocular dominance after monocular deprivation. Exp Brain Res. 1985;59(3):507–514. doi: 10.1007/BF00261341. [DOI] [PubMed] [Google Scholar]
- Kasamatsu T., Watabe K., Heggelund P., Schöller E. Plasticity in cat visual cortex restored by electrical stimulation of the locus coeruleus. Neurosci Res. 1985 Jun;2(5):365–386. doi: 10.1016/0168-0102(85)90047-1. [DOI] [PubMed] [Google Scholar]
- Kleinschmidt A., Bear M. F., Singer W. Blockade of "NMDA" receptors disrupts experience-dependent plasticity of kitten striate cortex. Science. 1987 Oct 16;238(4825):355–358. doi: 10.1126/science.2443978. [DOI] [PubMed] [Google Scholar]
- Laurenza A., Sutkowski E. M., Seamon K. B. Forskolin: a specific stimulator of adenylyl cyclase or a diterpene with multiple sites of action? Trends Pharmacol Sci. 1989 Nov;10(11):442–447. doi: 10.1016/S0165-6147(89)80008-2. [DOI] [PubMed] [Google Scholar]
- Levick W. R. Another tungsten microelectrode. Med Biol Eng. 1972 Jul;10(4):510–515. doi: 10.1007/BF02474199. [DOI] [PubMed] [Google Scholar]
- Macy A., Ohzawa I., Freeman R. D. A quantitative study of the classification and stability of ocular dominance in the cat's visual cortex. Exp Brain Res. 1982;48(3):401–408. doi: 10.1007/BF00238616. [DOI] [PubMed] [Google Scholar]
- Mataga N., Imamura K., Watanabe Y. L-threo-3,4-dihydroxyphenylserine enhanced ocular dominance plasticity in adult cats. Neurosci Lett. 1992 Aug 17;142(2):115–118. doi: 10.1016/0304-3940(92)90352-8. [DOI] [PubMed] [Google Scholar]
- Mioche L., Singer W. Chronic recordings from single sites of kitten striate cortex during experience-dependent modifications of receptive-field properties. J Neurophysiol. 1989 Jul;62(1):185–197. doi: 10.1152/jn.1989.62.1.185. [DOI] [PubMed] [Google Scholar]
- Mower G. D., Berry D., Burchfiel J. L., Duffy F. H. Comparison of the effects of dark rearing and binocular suture on development and plasticity of cat visual cortex. Brain Res. 1981 Sep 14;220(2):255–267. doi: 10.1016/0006-8993(81)91216-6. [DOI] [PubMed] [Google Scholar]
- Mower G. D., Christen W. G. Evidence for an enhanced role of GABA inhibition in visual cortical ocular dominance of cats reared with abnormal monocular experience. Brain Res Dev Brain Res. 1989 Feb 1;45(2):211–218. doi: 10.1016/0165-3806(89)90040-0. [DOI] [PubMed] [Google Scholar]
- OTSUKA R., HASSLER R. [On the structure and segmentation of the cortical center of vision in the cat]. Arch Psychiatr Nervenkr Z Gesamte Neurol Psychiatr. 1962;203:212–234. doi: 10.1007/BF00352744. [DOI] [PubMed] [Google Scholar]
- Olson C. R., Freeman R. D. Progressive changes in kitten striate cortex during monocular vision. J Neurophysiol. 1975 Jan;38(1):26–32. doi: 10.1152/jn.1975.38.1.26. [DOI] [PubMed] [Google Scholar]
- Pettigrew J. D., Kasamatsu T. Local perfusion of noradrenaline maintains visual cortical plasticity. Nature. 1978 Feb 23;271(5647):761–763. doi: 10.1038/271761a0. [DOI] [PubMed] [Google Scholar]
- Raman I. M., Tong G., Jahr C. E. Beta-adrenergic regulation of synaptic NMDA receptors by cAMP-dependent protein kinase. Neuron. 1996 Feb;16(2):415–421. doi: 10.1016/s0896-6273(00)80059-8. [DOI] [PubMed] [Google Scholar]
- Ramoa A. S., Paradiso M. A., Freeman R. D. Blockade of intracortical inhibition in kitten striate cortex: effects on receptive field properties and associated loss of ocular dominance plasticity. Exp Brain Res. 1988;73(2):285–296. doi: 10.1007/BF00248220. [DOI] [PubMed] [Google Scholar]
- Rauschecker J. P., Hahn S. Ketamine-xylazine anaesthesia blocks consolidation of ocular dominance changes in kitten visual cortex. Nature. 1987 Mar 12;326(6109):183–185. doi: 10.1038/326183a0. [DOI] [PubMed] [Google Scholar]
- Reid S. N., Daw N. W., Gregory D. S., Flavin H. cAMP levels increased by activation of metabotropic glutamate receptors correlate with visual plasticity. J Neurosci. 1996 Dec 1;16(23):7619–7626. doi: 10.1523/JNEUROSCI.16-23-07619.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts E. B., Meredith M. A., Ramoa A. S. Suppression of NMDA receptor function using antisense DNA block ocular dominance plasticity while preserving visual responses. J Neurophysiol. 1998 Sep;80(3):1021–1032. doi: 10.1152/jn.1998.80.3.1021. [DOI] [PubMed] [Google Scholar]
- Rosenberg P. A., Li Y. Adenylyl cyclase activation underlies intracellular cyclic AMP accumulation, cyclic AMP transport, and extracellular adenosine accumulation evoked by beta-adrenergic receptor stimulation in mixed cultures of neurons and astrocytes derived from rat cerebral cortex. Brain Res. 1995 Sep 18;692(1-2):227–232. doi: 10.1016/0006-8993(95)00668-g. [DOI] [PubMed] [Google Scholar]
- Seamon K. B., Padgett W., Daly J. W. Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3363–3367. doi: 10.1073/pnas.78.6.3363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shaw C., Cynader M. Disruption of cortical activity prevents ocular dominance changes in monocularly deprived kittens. Nature. 1984 Apr 19;308(5961):731–734. doi: 10.1038/308731a0. [DOI] [PubMed] [Google Scholar]
- Shirokawa T., Kasamatsu T. Concentration-dependent suppression by beta-adrenergic antagonists of the shift in ocular dominance following monocular deprivation in kitten visual cortex. Neuroscience. 1986 Aug;18(4):1035–1046. doi: 10.1016/0306-4522(86)90115-6. [DOI] [PubMed] [Google Scholar]
- Shirokawa T., Kasamatsu T., Kuppermann B. D., Ramachandran V. S. Noradrenergic control of ocular dominance plasticity in the visual cortex of dark-reared cats. Brain Res Dev Brain Res. 1989 Jun 1;47(2):303–308. doi: 10.1016/0165-3806(89)90187-9. [DOI] [PubMed] [Google Scholar]
- Shirokawa T., Kasamatsu T. Reemergence of ocular dominance plasticity during recovery from the effects of propranolol infused in kitten visual cortex. Exp Brain Res. 1987;68(3):466–476. doi: 10.1007/BF00249791. [DOI] [PubMed] [Google Scholar]
- Stanton P. K., Sarvey J. M. Depletion of norepinephrine, but not serotonin, reduces long-term potentiation in the dentate gyrus of rat hippocampal slices. J Neurosci. 1985 Aug;5(8):2169–2176. doi: 10.1523/JNEUROSCI.05-08-02169.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanaka S. Theory of ocular dominance column formation. Mathematical basis and computer simulation. Biol Cybern. 1991;64(4):263–272. doi: 10.1007/BF00199589. [DOI] [PubMed] [Google Scholar]
- Thomas M. J., Moody T. D., Makhinson M., O'Dell T. J. Activity-dependent beta-adrenergic modulation of low frequency stimulation induced LTP in the hippocampal CA1 region. Neuron. 1996 Sep;17(3):475–482. doi: 10.1016/s0896-6273(00)80179-8. [DOI] [PubMed] [Google Scholar]
- WIESEL T. N., HUBEL D. H. SINGLE-CELL RESPONSES IN STRIATE CORTEX OF KITTENS DEPRIVED OF VISION IN ONE EYE. J Neurophysiol. 1963 Nov;26:1003–1017. doi: 10.1152/jn.1963.26.6.1003. [DOI] [PubMed] [Google Scholar]
- Weisskopf M. G., Castillo P. E., Zalutsky R. A., Nicoll R. A. Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. Science. 1994 Sep 23;265(5180):1878–1882. doi: 10.1126/science.7916482. [DOI] [PubMed] [Google Scholar]
- Wiesel T. N., Hubel D. H. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol. 1965 Nov;28(6):1029–1040. doi: 10.1152/jn.1965.28.6.1029. [DOI] [PubMed] [Google Scholar]
- Wong-Riley M. Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res. 1979 Jul 27;171(1):11–28. doi: 10.1016/0006-8993(79)90728-5. [DOI] [PubMed] [Google Scholar]
- Wu Z. L., Thomas S. A., Villacres E. C., Xia Z., Simmons M. L., Chavkin C., Palmiter R. D., Storm D. R. Altered behavior and long-term potentiation in type I adenylyl cyclase mutant mice. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):220–224. doi: 10.1073/pnas.92.1.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yin J. C., Tully T. CREB and the formation of long-term memory. Curr Opin Neurobiol. 1996 Apr;6(2):264–268. doi: 10.1016/s0959-4388(96)80082-1. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.