Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1999 Oct 7;266(1432):2023–2028. doi: 10.1098/rspb.1999.0881

Uniformity of colour vision in Old World monkeys.

G H Jacobs 1, J F Deegan 2nd 1
PMCID: PMC1690314  PMID: 10584339

Abstract

It is often assumed that all Old World monkeys share the same trichromatic colour vision, but the evidence in support of this conclusion is sparse as only a small fraction of all Old World monkey species have been tested. To address this issue, spectral sensitivity functions were measured in animals from eight species of Old World monkey (five cercopithecine species and three colobine species) using a non-invasive electrophysiological technique. Each of the 25 animals examined had spectrally well-separated middle- and long-wavelength cone pigments. Cone pigments maximally sensitive to short wavelengths were also detected, implying the presence of trichromatic colour vision. Direct comparisons of the spectral sensitivity functions of Old World monkeys suggest there are no significant variations in the spectral positions of the cone pigments underlying the trichromatic colour vision of Old World monkeys.

Full Text

The Full Text of this article is available as a PDF (145.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowmaker J. K., Astell S., Hunt D. M., Mollon J. D. Photosensitive and photostable pigments in the retinae of Old World monkeys. J Exp Biol. 1991 Mar;156:1–19. doi: 10.1242/jeb.156.1.1. [DOI] [PubMed] [Google Scholar]
  2. De Valois R. L., Morgan H. C., Polson M. C., Mead W. R., Hull E. M. Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests. Vision Res. 1974 Jan;14(1):53–67. doi: 10.1016/0042-6989(74)90116-3. [DOI] [PubMed] [Google Scholar]
  3. Dulai K. S., Bowmaker J. K., Mollon J. D., Hunt D. M. Sequence divergence, polymorphism and evolution of the middle-wave and long-wave visual pigment genes of great apes and Old World monkeys. Vision Res. 1994 Oct;34(19):2483–2491. doi: 10.1016/0042-6989(94)90233-x. [DOI] [PubMed] [Google Scholar]
  4. Harwerth R. S., Smith E. L., 3rd Rhesus monkey as a model for normal vision of humans. Am J Optom Physiol Opt. 1985 Sep;62(9):633–641. doi: 10.1097/00006324-198509000-00009. [DOI] [PubMed] [Google Scholar]
  5. Jacobs G. H. A perspective on color vision in platyrrhine monkeys. Vision Res. 1998 Nov;38(21):3307–3313. doi: 10.1016/s0042-6989(97)00405-7. [DOI] [PubMed] [Google Scholar]
  6. Jacobs G. H., Deegan J. F., 2nd, Moran J. L. ERG measurements of the spectral sensitivity of common chimpanzee (Pan troglodytes). Vision Res. 1996 Aug;36(16):2587–2594. doi: 10.1016/0042-6989(95)00335-5. [DOI] [PubMed] [Google Scholar]
  7. Jacobs G. H., Deegan J. F., 2nd Spectral sensitivity of macaque monkeys measured with ERG flicker photometry. Vis Neurosci. 1997 Sep-Oct;14(5):921–928. doi: 10.1017/s0952523800011639. [DOI] [PubMed] [Google Scholar]
  8. Jacobs G. H., Neitz J. Inheritance of color vision in a New World monkey (Saimiri sciureus). Proc Natl Acad Sci U S A. 1987 Apr;84(8):2545–2549. doi: 10.1073/pnas.84.8.2545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jacobs G. H. The distribution and nature of colour vision among the mammals. Biol Rev Camb Philos Soc. 1993 Aug;68(3):413–471. doi: 10.1111/j.1469-185x.1993.tb00738.x. [DOI] [PubMed] [Google Scholar]
  10. Lucas P. W., Darvell B. W., Lee P. K., Yuen T. D., Choong M. F. Colour cues for leaf food selection by long-tailed macaques (Macaca fascicularis) with a new suggestion for the evolution of trichromatic colour vision. Folia Primatol (Basel) 1998;69(3):139–152. doi: 10.1159/000021576. [DOI] [PubMed] [Google Scholar]
  11. Mansfield R. J., Levine J. S., Lipetz L. E., Collins B. A., Raymond G., MacNichol E. F., Jr Blue-sensitive cones in the primate retina: microspectrophotometry of the visual pigment. Exp Brain Res. 1984;56(2):389–394. doi: 10.1007/BF00236296. [DOI] [PubMed] [Google Scholar]
  12. Nathans J., Thomas D., Hogness D. S. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science. 1986 Apr 11;232(4747):193–202. doi: 10.1126/science.2937147. [DOI] [PubMed] [Google Scholar]
  13. Osorio D., Vorobyev M. Colour vision as an adaptation to frugivory in primates. Proc Biol Sci. 1996 May 22;263(1370):593–599. doi: 10.1098/rspb.1996.0089. [DOI] [PubMed] [Google Scholar]
  14. Regan B. C., Julliot C., Simmen B., Viénot F., Charles-Dominique P., Mollon J. D. Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey. Vision Res. 1998 Nov;38(21):3321–3327. doi: 10.1016/s0042-6989(97)00462-8. [DOI] [PubMed] [Google Scholar]
  15. Schnapf J. L., Kraft T. W., Nunn B. J., Baylor D. A. Spectral sensitivity of primate photoreceptors. Vis Neurosci. 1988;1(3):255–261. doi: 10.1017/s0952523800001917. [DOI] [PubMed] [Google Scholar]
  16. Stewart C. B., Disotell T. R. Primate evolution - in and out of Africa. 1998 Jul 30-Aug 13Curr Biol. 8(16):R582–R588. doi: 10.1016/s0960-9822(07)00367-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES