Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1999 Nov 7;266(1434):2225–2229. doi: 10.1098/rspb.1999.0912

A paradoxical improvement of misreaching in optic ataxia: new evidence for two separate neural systems for visual localization.

A D Milner 1, Y Paulignan 1, H C Dijkerman 1, F Michel 1, M Jeannerod 1
PMCID: PMC1690335  PMID: 10649637

Abstract

We tested a patient (A. T.) with bilateral brain damage to the parietal lobes, whose resulting 'optic ataxia' causes her to make large pointing errors when asked to locate single light emitting diodes presented in her visual field. We report here that, unlike normal individuals, A. T.'s pointing accuracy improved when she was required to wait for 5 s before responding. This counter-intuitive result is interpreted as reflecting the very brief time-scale on which visuomotor control systems in the superior parietal lobe operate. When an immediate response was required, A. T.'s damaged visuomotor system caused her to make large errors; but when a delay was required, a different, more flexible, visuospatial coding system--presumably relatively intact in her brain--came into play, resulting in much more accurate responses. The data are consistent with a dual processing theory whereby motor responses made directly to visual stimuli are guided by a dedicated system in the superior parietal and premotor cortices, while responses to remembered stimuli depend on perceptual processing and may thus crucially involve processing within the temporal neocortex.

Full Text

The Full Text of this article is available as a PDF (198.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen R. A. Multimodal integration for the representation of space in the posterior parietal cortex. Philos Trans R Soc Lond B Biol Sci. 1997 Oct 29;352(1360):1421–1428. doi: 10.1098/rstb.1997.0128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berkinblit M. B., Fookson O. I., Smetanin B., Adamovich S. V., Poizner H. The interaction of visual and proprioceptive inputs in pointing to actual and remembered targets. Exp Brain Res. 1995;107(2):326–330. doi: 10.1007/BF00230053. [DOI] [PubMed] [Google Scholar]
  3. Bridgeman B., Peery S., Anand S. Interaction of cognitive and sensorimotor maps of visual space. Percept Psychophys. 1997 Apr;59(3):456–469. doi: 10.3758/bf03211912. [DOI] [PubMed] [Google Scholar]
  4. Bridgemen B., Kirch M., Sperling A. Segregation of cognitive and motor aspects of visual function using induced motion. Percept Psychophys. 1981 Apr;29(4):336–342. doi: 10.3758/bf03207342. [DOI] [PubMed] [Google Scholar]
  5. Caminiti R., Ferraina S., Johnson P. B. The sources of visual information to the primate frontal lobe: a novel role for the superior parietal lobule. Cereb Cortex. 1996 May-Jun;6(3):319–328. doi: 10.1093/cercor/6.3.319. [DOI] [PubMed] [Google Scholar]
  6. Desmurget M., Epstein C. M., Turner R. S., Prablanc C., Alexander G. E., Grafton S. T. Role of the posterior parietal cortex in updating reaching movements to a visual target. Nat Neurosci. 1999 Jun;2(6):563–567. doi: 10.1038/9219. [DOI] [PubMed] [Google Scholar]
  7. Dijkerman H. C., Milner A. D., Carey D. P. Grasping spatial relationships: failure to demonstrate allocentric visual coding in a patient with visual form agnosia. Conscious Cogn. 1998 Sep;7(3):424–437. doi: 10.1006/ccog.1998.0365. [DOI] [PubMed] [Google Scholar]
  8. Elliott D., Madalena J. The influence of premovement visual information on manual aiming. Q J Exp Psychol A. 1987 Aug;39(3):541–559. doi: 10.1080/14640748708401802. [DOI] [PubMed] [Google Scholar]
  9. Goodale M. A., Jakobson L. S., Keillor J. M. Differences in the visual control of pantomimed and natural grasping movements. Neuropsychologia. 1994 Oct;32(10):1159–1178. doi: 10.1016/0028-3932(94)90100-7. [DOI] [PubMed] [Google Scholar]
  10. Goodale M. A., Pelisson D., Prablanc C. Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature. 1986 Apr 24;320(6064):748–750. doi: 10.1038/320748a0. [DOI] [PubMed] [Google Scholar]
  11. Grafton S. T., Fagg A. H., Woods R. P., Arbib M. A. Functional anatomy of pointing and grasping in humans. Cereb Cortex. 1996 Mar-Apr;6(2):226–237. doi: 10.1093/cercor/6.2.226. [DOI] [PubMed] [Google Scholar]
  12. Hu Y., Eagleson R., Goodale M. A. The effects of delay on the kinematics of grasping. Exp Brain Res. 1999 May;126(1):109–116. doi: 10.1007/s002210050720. [DOI] [PubMed] [Google Scholar]
  13. Jeannerod M., Decety J., Michel F. Impairment of grasping movements following a bilateral posterior parietal lesion. Neuropsychologia. 1994 Apr;32(4):369–380. doi: 10.1016/0028-3932(94)90084-1. [DOI] [PubMed] [Google Scholar]
  14. Jeannerod M. The formation of finger grip during prehension. A cortically mediated visuomotor pattern. Behav Brain Res. 1986 Feb;19(2):99–116. doi: 10.1016/0166-4328(86)90008-2. [DOI] [PubMed] [Google Scholar]
  15. Jeannerod M. The hand and the object: the role of posterior parietal cortex in forming motor representations. Can J Physiol Pharmacol. 1994 May;72(5):535–541. doi: 10.1139/y94-077. [DOI] [PubMed] [Google Scholar]
  16. Kawashima R., Naitoh E., Matsumura M., Itoh H., Ono S., Satoh K., Gotoh R., Koyama M., Inoue K., Yoshioka S. Topographic representation in human intraparietal sulcus of reaching and saccade. Neuroreport. 1996 May 17;7(7):1253–1256. doi: 10.1097/00001756-199605170-00006. [DOI] [PubMed] [Google Scholar]
  17. Milner A. D., Perrett D. I., Johnston R. S., Benson P. J., Jordan T. R., Heeley D. W., Bettucci D., Mortara F., Mutani R., Terazzi E. Perception and action in 'visual form agnosia'. Brain. 1991 Feb;114(Pt 1B):405–428. doi: 10.1093/brain/114.1.405. [DOI] [PubMed] [Google Scholar]
  18. Milner A. D. Vision without knowledge. Philos Trans R Soc Lond B Biol Sci. 1997 Aug 29;352(1358):1249–1256. doi: 10.1098/rstb.1997.0107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Missal M., Vogels R., Li C. Y., Orban G. A. Shape interactions in macaque inferior temporal neurons. J Neurophysiol. 1999 Jul;82(1):131–142. doi: 10.1152/jn.1999.82.1.131. [DOI] [PubMed] [Google Scholar]
  20. Perenin M. T., Vighetto A. Optic ataxia: a specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. Brain. 1988 Jun;111(Pt 3):643–674. doi: 10.1093/brain/111.3.643. [DOI] [PubMed] [Google Scholar]
  21. Rizzolatti G., Fogassi L., Gallese V. Parietal cortex: from sight to action. Curr Opin Neurobiol. 1997 Aug;7(4):562–567. doi: 10.1016/s0959-4388(97)80037-2. [DOI] [PubMed] [Google Scholar]
  22. Rossetti Y. Implicit short-lived motor representations of space in brain damaged and healthy subjects. Conscious Cogn. 1998 Sep;7(3):520–558. doi: 10.1006/ccog.1998.0370. [DOI] [PubMed] [Google Scholar]
  23. Wong E., Mack A. Saccadic programming and perceived location. Acta Psychol (Amst) 1981 Aug;48(1-3):123–131. doi: 10.1016/0001-6918(81)90054-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES