Abstract
Resting or basal metabolic rates, compared across a wide range of organisms, scale with respect to body mass as approximately the 0.75 power. This relationship has recently been linked to the fractal geometry of the appropriate transport system or, in the case of birds and mammals, the blood vascular system. However, the structural features of the blood vascular system should more closely reflect maximal aerobic metabolic rates rather than submaximal function. Thus, the maximal aerobic metabolic rates of birds and mammals should also scale as approximately the 0.75 power. A review of the literature on maximal oxygen consumption and factorial aerobic scope (maximum oxygen consumption divided by basal metabolic rate) suggests that body mass influences the capacity of the cardiovascular system to raise metabolic rates above those at rest. The results show that the maximum sustainable metabolic rates of both birds and mammals are similar and scale as approximately the 0.88 +/- 0.02 power of body mass (and aerobic scope as approximately the 0.15 +/- 0.05 power), when the measurements are standardized with respect to the differences in relative heart mass and haemoglobin concentration between species. The maximum heart beat frequency of birds and mammals is predicted to scale as the -0.12 +/- 0.02 power of body mass, while that at rest should scale as -0.27 +/- 0.04.
Full Text
The Full Text of this article is available as a PDF (162.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bishop C, Butler P. Physiological modelling of oxygen consumption in birds during flight. J Exp Biol. 1995;198(Pt 10):2153–2163. doi: 10.1242/jeb.198.10.2153. [DOI] [PubMed] [Google Scholar]
- Brackenbury J. H., Avery P., Gleeson M. Respiration in exercising fowl. I. Oxygen consumption, respiratory rate and respired gases. J Exp Biol. 1981 Aug;93:317–325. doi: 10.1242/jeb.93.1.317. [DOI] [PubMed] [Google Scholar]
- Daan S., Masman D., Groenewold A. Avian basal metabolic rates: their association with body composition and energy expenditure in nature. Am J Physiol. 1990 Aug;259(2 Pt 2):R333–R340. doi: 10.1152/ajpregu.1990.259.2.R333. [DOI] [PubMed] [Google Scholar]
- Feldman H. A., McMahon T. A. The 3/4 mass exponent for energy metabolism is not a statistical artifact. Respir Physiol. 1983 May;52(2):149–163. doi: 10.1016/0034-5687(83)90002-6. [DOI] [PubMed] [Google Scholar]
- Gleeson T. T., Mullin W. J., Baldwin K. M. Cardiovascular responses to treadmill exercise in rats: effects of training. J Appl Physiol Respir Environ Exerc Physiol. 1983 Mar;54(3):789–793. doi: 10.1152/jappl.1983.54.3.789. [DOI] [PubMed] [Google Scholar]
- Grubb B., Jorgensen D. D., Conner M. Cardiovascular changes in the exercising emu. J Exp Biol. 1983 May;104:193–201. doi: 10.1242/jeb.104.1.193. [DOI] [PubMed] [Google Scholar]
- Heusner A. A. Energy metabolism and body size. I. Is the 0.75 mass exponent of Kleiber's equation a statistical artifact? Respir Physiol. 1982 Apr;48(1):1–12. doi: 10.1016/0034-5687(82)90046-9. [DOI] [PubMed] [Google Scholar]
- Hinds D. S., Baudinette R. V., MacMillen R. E., Halpern E. A. Maximum metabolism and the aerobic factorial scope of endotherms. J Exp Biol. 1993 Sep;182:41–56. doi: 10.1242/jeb.182.1.41. [DOI] [PubMed] [Google Scholar]
- Jones J. H., Longworth K. E., Lindholm A., Conley K. E., Karas R. H., Kayar S. R., Taylor C. R. Oxygen transport during exercise in large mammals. I. Adaptive variation in oxygen demand. J Appl Physiol (1985) 1989 Aug;67(2):862–870. doi: 10.1152/jappl.1989.67.2.862. [DOI] [PubMed] [Google Scholar]
- Jürgens K. D., Fons R., Peters T., Sender S. Heart and respiratory rates and their significance for convective oxygen transport rates in the smallest mammal, the Etruscan shrew Suncus etruscus. J Exp Biol. 1996 Dec;199(Pt 12):2579–2584. doi: 10.1242/jeb.199.12.2579. [DOI] [PubMed] [Google Scholar]
- Lindstedt S. L., Hokanson J. F., Wells D. J., Swain S. D., Hoppeler H., Navarro V. Running energetics in the pronghorn antelope. Nature. 1991 Oct 24;353(6346):748–750. doi: 10.1038/353748a0. [DOI] [PubMed] [Google Scholar]
- Longworth K. E., Jones J. H., Bicudo J. E., Taylor C. R., Weibel E. R. High rate of O2 consumption in exercising foxes: large PO2 difference drives diffusion across the lung. Respir Physiol. 1989 Sep;77(3):263–276. doi: 10.1016/0034-5687(89)90115-1. [DOI] [PubMed] [Google Scholar]
- McNab B. K. Complications inherent in scaling the basal rate of metabolism in mammals. Q Rev Biol. 1988 Mar;63(1):25–54. doi: 10.1086/415715. [DOI] [PubMed] [Google Scholar]
- doi: 10.1098/rstb.1997.0032. [DOI] [PMC free article] [Google Scholar]
- Pasquis P., Lacaisse A., Dejours P. Maximal oxygen uptake in four species of small mammals. Respir Physiol. 1970 May;9(2):298–309. doi: 10.1016/0034-5687(70)90078-2. [DOI] [PubMed] [Google Scholar]
- Pedley T. J., Brook B. S., Seymour R. S. Blood pressure and flow rate in the giraffe jugular vein. Philos Trans R Soc Lond B Biol Sci. 1996 Jul 29;351(1342):855–866. doi: 10.1098/rstb.1996.0080. [DOI] [PubMed] [Google Scholar]
- Spencer R. P. A blood volume heart weight relationship. J Theor Biol. 1967 Dec;17(3):441–446. doi: 10.1016/0022-5193(67)90105-1. [DOI] [PubMed] [Google Scholar]
- Spencer R. P. Relative heart weight in porpoises. Science. 1966 Apr 8;152(3719):230–231. doi: 10.1126/science.152.3719.230-a. [DOI] [PubMed] [Google Scholar]
- Suarez R. K. Hummingbird flight: sustaining the highest mass-specific metabolic rates among vertebrates. Experientia. 1992 Jun 15;48(6):565–570. doi: 10.1007/BF01920240. [DOI] [PubMed] [Google Scholar]
- Taylor C. R., Maloiy G. M., Weibel E. R., Langman V. A., Kamau J. M., Seeherman H. J., Heglund N. C. Design of the mammalian respiratory system. III Scaling maximum aerobic capacity to body mass: wild and domestic mammals. Respir Physiol. 1981 Apr;44(1):25–37. doi: 10.1016/0034-5687(81)90075-x. [DOI] [PubMed] [Google Scholar]
- Taylor C. R., Weibel E. R. Design of the mammalian respiratory system. I. Problem and strategy. Respir Physiol. 1981 Apr;44(1):1–10. [PubMed] [Google Scholar]
- Torre-Bueno J. R., Larochelle J. The metabolic cost of flight in unrestrained birds. J Exp Biol. 1978 Aug;75:223–229. doi: 10.1242/jeb.75.1.223. [DOI] [PubMed] [Google Scholar]
- West G. B., Brown J. H., Enquist B. J. A general model for the origin of allometric scaling laws in biology. Science. 1997 Apr 4;276(5309):122–126. doi: 10.1126/science.276.5309.122. [DOI] [PubMed] [Google Scholar]