Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1999 Dec 7;266(1436):2441–2450. doi: 10.1098/rspb.1999.0944

Induced motion at texture-defined motion boundaries.

A Johnston 1, C P Benton 1, P W McOwan 1
PMCID: PMC1690470  PMID: 10643088

Abstract

When a static textured background is covered and uncovered by a moving bar of the same mean luminance we can clearly see the motion of the bar. Texture-defined motion provides an example of a naturally occurring second-order motion. Second-order motion sequences defeat standard spatio-temporal energy models of motion perception. It has been proposed that second-order stimuli are analysed by separate systems, operating in parallel with luminance-defined motion processing, which incorporate identifiable pre-processing stages that make second-order patterns visible to standard techniques. However, the proposal of multiple paths to motion analysis remains controversial. Here we describe the behaviour of a model that recovers both luminance-defined and an important class of texture-defined motion. The model also accounts for the induced motion that is seen in some texture-defined motion sequences. We measured the perceived direction and speed of both the contrast envelope and induced motion in the case of a contrast modulation of static noise textures. Significantly, the model predicts the perceived speed of the induced motion seen at second-order texture boundaries. The induced motion investigated here appears distinct from classical induced effects resulting from motion contrast or the movement of a reference frame.

Full Text

The Full Text of this article is available as a PDF (407.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelson E. H., Bergen J. R. Spatiotemporal energy models for the perception of motion. J Opt Soc Am A. 1985 Feb;2(2):284–299. doi: 10.1364/josaa.2.000284. [DOI] [PubMed] [Google Scholar]
  2. Albright T. D. Form-cue invariant motion processing in primate visual cortex. Science. 1992 Feb 28;255(5048):1141–1143. doi: 10.1126/science.1546317. [DOI] [PubMed] [Google Scholar]
  3. Badcock D. R., Derrington A. M. Detecting the displacements of spatial beats: no role for distortion products. Vision Res. 1989;29(6):731–739. doi: 10.1016/0042-6989(89)90035-7. [DOI] [PubMed] [Google Scholar]
  4. Benton C. P., Johnston A. First-order motion from contrast modulated noise? Vision Res. 1997 Nov;37(22):3073–3078. doi: 10.1016/s0042-6989(97)00174-0. [DOI] [PubMed] [Google Scholar]
  5. Cavanagh P., Mather G. Motion: the long and short of it. Spat Vis. 1989;4(2-3):103–129. doi: 10.1163/156856889x00077. [DOI] [PubMed] [Google Scholar]
  6. Chubb C., Sperling G. Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception. J Opt Soc Am A. 1988 Nov;5(11):1986–2007. doi: 10.1364/josaa.5.001986. [DOI] [PubMed] [Google Scholar]
  7. Clifford C. W., Vaina L. M. A computational model of selective deficits in first and second-order motion processing. Vision Res. 1999 Jan;39(1):113–130. doi: 10.1016/s0042-6989(98)00082-0. [DOI] [PubMed] [Google Scholar]
  8. Cropper S. J., Derrington A. M. Motion of chromatic stimuli: first-order or second-order? Vision Res. 1994 Jan;34(1):49–58. doi: 10.1016/0042-6989(94)90256-9. [DOI] [PubMed] [Google Scholar]
  9. Derrington A. M., Badcock D. R. Separate detectors for simple and complex grating patterns? Vision Res. 1985;25(12):1869–1878. doi: 10.1016/0042-6989(85)90010-0. [DOI] [PubMed] [Google Scholar]
  10. Derrington A. M., Ukkonen O. I. Second-order motion discrimination by feature-tracking. Vision Res. 1999 Apr;39(8):1465–1475. doi: 10.1016/s0042-6989(98)00227-2. [DOI] [PubMed] [Google Scholar]
  11. Emerson R. C., Bergen J. R., Adelson E. H. Directionally selective complex cells and the computation of motion energy in cat visual cortex. Vision Res. 1992 Feb;32(2):203–218. doi: 10.1016/0042-6989(92)90130-b. [DOI] [PubMed] [Google Scholar]
  12. Georgeson M. A., Shackleton T. M. Monocular motion sensing, binocular motion perception. Vision Res. 1989;29(11):1511–1523. doi: 10.1016/0042-6989(89)90135-1. [DOI] [PubMed] [Google Scholar]
  13. Greenlee M. W., Smith A. T. Detection and discrimination of first- and second-order motion in patients with unilateral brain damage. J Neurosci. 1997 Jan 15;17(2):804–818. doi: 10.1523/JNEUROSCI.17-02-00804.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harris L. R., Smith A. T. Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus. Vis Neurosci. 1992 Dec;9(6):565–570. doi: 10.1017/s0952523800001802. [DOI] [PubMed] [Google Scholar]
  15. Heeger D. J. Model for the extraction of image flow. J Opt Soc Am A. 1987 Aug;4(8):1455–1471. doi: 10.1364/josaa.4.001455. [DOI] [PubMed] [Google Scholar]
  16. Johnston A., Clifford C. W. A unified account of three apparent motion illusions. Vision Res. 1995 Apr;35(8):1109–1123. doi: 10.1016/0042-6989(94)00175-l. [DOI] [PubMed] [Google Scholar]
  17. Johnston A., Clifford C. W. Perceived motion of contrast-modulated gratings: predictions of the multi-channel gradient model and the role of full-wave rectification. Vision Res. 1995 Jun;35(12):1771–1783. doi: 10.1016/0042-6989(94)00258-n. [DOI] [PubMed] [Google Scholar]
  18. Johnston A., McOwan P. W., Buxton H. A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells. Proc Biol Sci. 1992 Dec 22;250(1329):297–306. doi: 10.1098/rspb.1992.0162. [DOI] [PubMed] [Google Scholar]
  19. Ledgeway T., Smith A. T. Evidence for separate motion-detecting mechanisms for first- and second-order motion in human vision. Vision Res. 1994 Oct;34(20):2727–2740. doi: 10.1016/0042-6989(94)90229-1. [DOI] [PubMed] [Google Scholar]
  20. Ledgeway T., Smith A. T. The perceived speed of second-order motion and its dependence on stimulus contrast. Vision Res. 1995 May;35(10):1421–1434. doi: 10.1016/0042-6989(95)98722-l. [DOI] [PubMed] [Google Scholar]
  21. Lu Z. L., Sperling G. Attention-generated apparent motion. Nature. 1995 Sep 21;377(6546):237–239. doi: 10.1038/377237a0. [DOI] [PubMed] [Google Scholar]
  22. Lu Z. L., Sperling G. The functional architecture of human visual motion perception. Vision Res. 1995 Oct;35(19):2697–2722. doi: 10.1016/0042-6989(95)00025-u. [DOI] [PubMed] [Google Scholar]
  23. Mareschal I., Baker C. L., Jr A cortical locus for the processing of contrast-defined contours. Nat Neurosci. 1998 Jun;1(2):150–154. doi: 10.1038/401. [DOI] [PubMed] [Google Scholar]
  24. Nakayama K., Loomis J. M. Optical velocity patterns, velocity-sensitive neurons, and space perception: a hypothesis. Perception. 1974;3(1):63–80. doi: 10.1068/p030063. [DOI] [PubMed] [Google Scholar]
  25. Nishida S., Edwards M., Sato T. Simultaneous motion contrast across space: involvement of second-order motion? Vision Res. 1997 Jan;37(2):199–214. doi: 10.1016/s0042-6989(96)00112-5. [DOI] [PubMed] [Google Scholar]
  26. Nishida S., Ledgeway T., Edwards M. Dual multiple-scale processing for motion in the human visual system. Vision Res. 1997 Oct;37(19):2685–2698. doi: 10.1016/s0042-6989(97)00092-8. [DOI] [PubMed] [Google Scholar]
  27. Nishida S., Sato T. Motion aftereffect with flickering test patterns reveals higher stages of motion processing. Vision Res. 1995 Feb;35(4):477–490. doi: 10.1016/0042-6989(94)00144-b. [DOI] [PubMed] [Google Scholar]
  28. O'Keefe L. P., Movshon J. A. Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey. Vis Neurosci. 1998 Mar-Apr;15(2):305–317. doi: 10.1017/s0952523898152094. [DOI] [PubMed] [Google Scholar]
  29. doi: 10.1098/rspb.1999.0666. [DOI] [PMC free article] [Google Scholar]
  30. Raymond J. E., Darcangelo S. M. The effect of local luminance contrast on induced motion. Vision Res. 1990;30(5):751–756. doi: 10.1016/0042-6989(90)90100-y. [DOI] [PubMed] [Google Scholar]
  31. Seiffert A. E., Cavanagh P. Position displacement, not velocity, is the cue to motion detection of second-order stimuli. Vision Res. 1998 Nov;38(22):3569–3582. doi: 10.1016/s0042-6989(98)00035-2. [DOI] [PubMed] [Google Scholar]
  32. Simoncelli E. P., Heeger D. J. A model of neuronal responses in visual area MT. Vision Res. 1998 Mar;38(5):743–761. doi: 10.1016/s0042-6989(97)00183-1. [DOI] [PubMed] [Google Scholar]
  33. Smith A. T., Greenlee M. W., Singh K. D., Kraemer F. M., Hennig J. The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). J Neurosci. 1998 May 15;18(10):3816–3830. doi: 10.1523/JNEUROSCI.18-10-03816.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Smith A. T., Scott-Samuel N. E. Stereoscopic and contrast-defined motion in human vision. Proc Biol Sci. 1998 Aug 22;265(1405):1573–1581. doi: 10.1098/rspb.1998.0474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Solomon J. A., Sperling G. Full-wave and half-wave rectification in second-order motion perception. Vision Res. 1994 Sep;34(17):2239–2257. doi: 10.1016/0042-6989(94)90105-8. [DOI] [PubMed] [Google Scholar]
  36. Vaina L. M., Cowey A. Impairment of the perception of second order motion but not first order motion in a patient with unilateral focal brain damage. Proc Biol Sci. 1996 Sep 22;263(1374):1225–1232. doi: 10.1098/rspb.1996.0180. [DOI] [PubMed] [Google Scholar]
  37. Vaina L. M., Makris N., Kennedy D., Cowey A. The selective impairment of the perception of first-order motion by unilateral cortical brain damage. Vis Neurosci. 1998 Mar-Apr;15(2):333–348. doi: 10.1017/s0952523898152082. [DOI] [PubMed] [Google Scholar]
  38. Watson A. B., Ahumada A. J., Jr Model of human visual-motion sensing. J Opt Soc Am A. 1985 Feb;2(2):322–341. doi: 10.1364/josaa.2.000322. [DOI] [PubMed] [Google Scholar]
  39. Werkhoven P., Sperling G., Chubb C. The dimensionality of texture-defined motion: a single channel theory. Vision Res. 1993 Mar;33(4):463–485. doi: 10.1016/0042-6989(93)90253-s. [DOI] [PubMed] [Google Scholar]
  40. Wilson H. R., Kim J. A model for motion coherence and transparency. Vis Neurosci. 1994 Nov-Dec;11(6):1205–1220. doi: 10.1017/s0952523800007008. [DOI] [PubMed] [Google Scholar]
  41. Zanker J. M. On the elementary mechanism underlying secondary motion processing. Philos Trans R Soc Lond B Biol Sci. 1996 Dec 29;351(1348):1725–1736. doi: 10.1098/rstb.1996.0154. [DOI] [PubMed] [Google Scholar]
  42. Zhou Y. X., Baker C. L., Jr A processing stream in mammalian visual cortex neurons for non-Fourier responses. Science. 1993 Jul 2;261(5117):98–101. doi: 10.1126/science.8316862. [DOI] [PubMed] [Google Scholar]
  43. van Santen J. P., Sperling G. Elaborated Reichardt detectors. J Opt Soc Am A. 1985 Feb;2(2):300–321. doi: 10.1364/josaa.2.000300. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES