Abstract
When a static textured background is covered and uncovered by a moving bar of the same mean luminance we can clearly see the motion of the bar. Texture-defined motion provides an example of a naturally occurring second-order motion. Second-order motion sequences defeat standard spatio-temporal energy models of motion perception. It has been proposed that second-order stimuli are analysed by separate systems, operating in parallel with luminance-defined motion processing, which incorporate identifiable pre-processing stages that make second-order patterns visible to standard techniques. However, the proposal of multiple paths to motion analysis remains controversial. Here we describe the behaviour of a model that recovers both luminance-defined and an important class of texture-defined motion. The model also accounts for the induced motion that is seen in some texture-defined motion sequences. We measured the perceived direction and speed of both the contrast envelope and induced motion in the case of a contrast modulation of static noise textures. Significantly, the model predicts the perceived speed of the induced motion seen at second-order texture boundaries. The induced motion investigated here appears distinct from classical induced effects resulting from motion contrast or the movement of a reference frame.
Full Text
The Full Text of this article is available as a PDF (407.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adelson E. H., Bergen J. R. Spatiotemporal energy models for the perception of motion. J Opt Soc Am A. 1985 Feb;2(2):284–299. doi: 10.1364/josaa.2.000284. [DOI] [PubMed] [Google Scholar]
- Albright T. D. Form-cue invariant motion processing in primate visual cortex. Science. 1992 Feb 28;255(5048):1141–1143. doi: 10.1126/science.1546317. [DOI] [PubMed] [Google Scholar]
- Badcock D. R., Derrington A. M. Detecting the displacements of spatial beats: no role for distortion products. Vision Res. 1989;29(6):731–739. doi: 10.1016/0042-6989(89)90035-7. [DOI] [PubMed] [Google Scholar]
- Benton C. P., Johnston A. First-order motion from contrast modulated noise? Vision Res. 1997 Nov;37(22):3073–3078. doi: 10.1016/s0042-6989(97)00174-0. [DOI] [PubMed] [Google Scholar]
- Cavanagh P., Mather G. Motion: the long and short of it. Spat Vis. 1989;4(2-3):103–129. doi: 10.1163/156856889x00077. [DOI] [PubMed] [Google Scholar]
- Chubb C., Sperling G. Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception. J Opt Soc Am A. 1988 Nov;5(11):1986–2007. doi: 10.1364/josaa.5.001986. [DOI] [PubMed] [Google Scholar]
- Clifford C. W., Vaina L. M. A computational model of selective deficits in first and second-order motion processing. Vision Res. 1999 Jan;39(1):113–130. doi: 10.1016/s0042-6989(98)00082-0. [DOI] [PubMed] [Google Scholar]
- Cropper S. J., Derrington A. M. Motion of chromatic stimuli: first-order or second-order? Vision Res. 1994 Jan;34(1):49–58. doi: 10.1016/0042-6989(94)90256-9. [DOI] [PubMed] [Google Scholar]
- Derrington A. M., Badcock D. R. Separate detectors for simple and complex grating patterns? Vision Res. 1985;25(12):1869–1878. doi: 10.1016/0042-6989(85)90010-0. [DOI] [PubMed] [Google Scholar]
- Derrington A. M., Ukkonen O. I. Second-order motion discrimination by feature-tracking. Vision Res. 1999 Apr;39(8):1465–1475. doi: 10.1016/s0042-6989(98)00227-2. [DOI] [PubMed] [Google Scholar]
- Emerson R. C., Bergen J. R., Adelson E. H. Directionally selective complex cells and the computation of motion energy in cat visual cortex. Vision Res. 1992 Feb;32(2):203–218. doi: 10.1016/0042-6989(92)90130-b. [DOI] [PubMed] [Google Scholar]
- Georgeson M. A., Shackleton T. M. Monocular motion sensing, binocular motion perception. Vision Res. 1989;29(11):1511–1523. doi: 10.1016/0042-6989(89)90135-1. [DOI] [PubMed] [Google Scholar]
- Greenlee M. W., Smith A. T. Detection and discrimination of first- and second-order motion in patients with unilateral brain damage. J Neurosci. 1997 Jan 15;17(2):804–818. doi: 10.1523/JNEUROSCI.17-02-00804.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris L. R., Smith A. T. Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus. Vis Neurosci. 1992 Dec;9(6):565–570. doi: 10.1017/s0952523800001802. [DOI] [PubMed] [Google Scholar]
- Heeger D. J. Model for the extraction of image flow. J Opt Soc Am A. 1987 Aug;4(8):1455–1471. doi: 10.1364/josaa.4.001455. [DOI] [PubMed] [Google Scholar]
- Johnston A., Clifford C. W. A unified account of three apparent motion illusions. Vision Res. 1995 Apr;35(8):1109–1123. doi: 10.1016/0042-6989(94)00175-l. [DOI] [PubMed] [Google Scholar]
- Johnston A., Clifford C. W. Perceived motion of contrast-modulated gratings: predictions of the multi-channel gradient model and the role of full-wave rectification. Vision Res. 1995 Jun;35(12):1771–1783. doi: 10.1016/0042-6989(94)00258-n. [DOI] [PubMed] [Google Scholar]
- Johnston A., McOwan P. W., Buxton H. A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells. Proc Biol Sci. 1992 Dec 22;250(1329):297–306. doi: 10.1098/rspb.1992.0162. [DOI] [PubMed] [Google Scholar]
- Ledgeway T., Smith A. T. Evidence for separate motion-detecting mechanisms for first- and second-order motion in human vision. Vision Res. 1994 Oct;34(20):2727–2740. doi: 10.1016/0042-6989(94)90229-1. [DOI] [PubMed] [Google Scholar]
- Ledgeway T., Smith A. T. The perceived speed of second-order motion and its dependence on stimulus contrast. Vision Res. 1995 May;35(10):1421–1434. doi: 10.1016/0042-6989(95)98722-l. [DOI] [PubMed] [Google Scholar]
- Lu Z. L., Sperling G. Attention-generated apparent motion. Nature. 1995 Sep 21;377(6546):237–239. doi: 10.1038/377237a0. [DOI] [PubMed] [Google Scholar]
- Lu Z. L., Sperling G. The functional architecture of human visual motion perception. Vision Res. 1995 Oct;35(19):2697–2722. doi: 10.1016/0042-6989(95)00025-u. [DOI] [PubMed] [Google Scholar]
- Mareschal I., Baker C. L., Jr A cortical locus for the processing of contrast-defined contours. Nat Neurosci. 1998 Jun;1(2):150–154. doi: 10.1038/401. [DOI] [PubMed] [Google Scholar]
- Nakayama K., Loomis J. M. Optical velocity patterns, velocity-sensitive neurons, and space perception: a hypothesis. Perception. 1974;3(1):63–80. doi: 10.1068/p030063. [DOI] [PubMed] [Google Scholar]
- Nishida S., Edwards M., Sato T. Simultaneous motion contrast across space: involvement of second-order motion? Vision Res. 1997 Jan;37(2):199–214. doi: 10.1016/s0042-6989(96)00112-5. [DOI] [PubMed] [Google Scholar]
- Nishida S., Ledgeway T., Edwards M. Dual multiple-scale processing for motion in the human visual system. Vision Res. 1997 Oct;37(19):2685–2698. doi: 10.1016/s0042-6989(97)00092-8. [DOI] [PubMed] [Google Scholar]
- Nishida S., Sato T. Motion aftereffect with flickering test patterns reveals higher stages of motion processing. Vision Res. 1995 Feb;35(4):477–490. doi: 10.1016/0042-6989(94)00144-b. [DOI] [PubMed] [Google Scholar]
- O'Keefe L. P., Movshon J. A. Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey. Vis Neurosci. 1998 Mar-Apr;15(2):305–317. doi: 10.1017/s0952523898152094. [DOI] [PubMed] [Google Scholar]
- doi: 10.1098/rspb.1999.0666. [DOI] [PMC free article] [Google Scholar]
- Raymond J. E., Darcangelo S. M. The effect of local luminance contrast on induced motion. Vision Res. 1990;30(5):751–756. doi: 10.1016/0042-6989(90)90100-y. [DOI] [PubMed] [Google Scholar]
- Seiffert A. E., Cavanagh P. Position displacement, not velocity, is the cue to motion detection of second-order stimuli. Vision Res. 1998 Nov;38(22):3569–3582. doi: 10.1016/s0042-6989(98)00035-2. [DOI] [PubMed] [Google Scholar]
- Simoncelli E. P., Heeger D. J. A model of neuronal responses in visual area MT. Vision Res. 1998 Mar;38(5):743–761. doi: 10.1016/s0042-6989(97)00183-1. [DOI] [PubMed] [Google Scholar]
- Smith A. T., Greenlee M. W., Singh K. D., Kraemer F. M., Hennig J. The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). J Neurosci. 1998 May 15;18(10):3816–3830. doi: 10.1523/JNEUROSCI.18-10-03816.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith A. T., Scott-Samuel N. E. Stereoscopic and contrast-defined motion in human vision. Proc Biol Sci. 1998 Aug 22;265(1405):1573–1581. doi: 10.1098/rspb.1998.0474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Solomon J. A., Sperling G. Full-wave and half-wave rectification in second-order motion perception. Vision Res. 1994 Sep;34(17):2239–2257. doi: 10.1016/0042-6989(94)90105-8. [DOI] [PubMed] [Google Scholar]
- Vaina L. M., Cowey A. Impairment of the perception of second order motion but not first order motion in a patient with unilateral focal brain damage. Proc Biol Sci. 1996 Sep 22;263(1374):1225–1232. doi: 10.1098/rspb.1996.0180. [DOI] [PubMed] [Google Scholar]
- Vaina L. M., Makris N., Kennedy D., Cowey A. The selective impairment of the perception of first-order motion by unilateral cortical brain damage. Vis Neurosci. 1998 Mar-Apr;15(2):333–348. doi: 10.1017/s0952523898152082. [DOI] [PubMed] [Google Scholar]
- Watson A. B., Ahumada A. J., Jr Model of human visual-motion sensing. J Opt Soc Am A. 1985 Feb;2(2):322–341. doi: 10.1364/josaa.2.000322. [DOI] [PubMed] [Google Scholar]
- Werkhoven P., Sperling G., Chubb C. The dimensionality of texture-defined motion: a single channel theory. Vision Res. 1993 Mar;33(4):463–485. doi: 10.1016/0042-6989(93)90253-s. [DOI] [PubMed] [Google Scholar]
- Wilson H. R., Kim J. A model for motion coherence and transparency. Vis Neurosci. 1994 Nov-Dec;11(6):1205–1220. doi: 10.1017/s0952523800007008. [DOI] [PubMed] [Google Scholar]
- Zanker J. M. On the elementary mechanism underlying secondary motion processing. Philos Trans R Soc Lond B Biol Sci. 1996 Dec 29;351(1348):1725–1736. doi: 10.1098/rstb.1996.0154. [DOI] [PubMed] [Google Scholar]
- Zhou Y. X., Baker C. L., Jr A processing stream in mammalian visual cortex neurons for non-Fourier responses. Science. 1993 Jul 2;261(5117):98–101. doi: 10.1126/science.8316862. [DOI] [PubMed] [Google Scholar]
- van Santen J. P., Sperling G. Elaborated Reichardt detectors. J Opt Soc Am A. 1985 Feb;2(2):300–321. doi: 10.1364/josaa.2.000300. [DOI] [PubMed] [Google Scholar]