Abstract
The purpose of this study was to resolve the controversy as to whether or not chloroplasts possess the enzyme carnitine acetyltransferase (CAT) and whether the activity of this enzyme is sufficient to support previously reported rates of fatty acid synthesis from acetylcarnitine. CAT catalyses the freely reversible reaction: carnitine + short-chain acylCoA <--> short-chain acylcarnitine + CoASH. CAT activity was detected in thc chloroplasts of Pisum sativum L. With membrane-impermeable acetyl CoA as a substrate. activity was only detected in ruptured chloroplasts and not with intact chloroplasts, indicating that the enzyme was located on the stromal side of the envelope. In crude preparations, CAT could only be detected using a sensitive radioenzymatic assay due to competing reactions from other enzymes using acetyl CoA and large amounts of ultraviolet-absorbing materials. After partial purification of the enzyme, CAT was detected in both the forward and reverse directions using spectrophotometric assays. Rates of 100 nmol of product formed per minute per milligram of protein were obtained, which is sufficient to support reported fatty acid synthesis rates from acetylcarnitine. Chloroplastic CAT showed optimal activity at pH 8.5 and had a high substrate specificity, handling C2-C4 acyl CoAs only. We believe that CAT has been satisfactorily demonstrated in pea chloroplasts.
Full Text
The Full Text of this article is available as a PDF (208.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BROOKS J. L., STUMPF P. K. A SOLUBLE FATTY ACID SYNTHESIZING SYSTEM FROM LETTUCE CHLOROPLASTS. Biochim Biophys Acta. 1965 Feb 1;98:213–216. doi: 10.1016/0005-2760(65)90027-5. [DOI] [PubMed] [Google Scholar]
- Bieber L. L. Carnitine. Annu Rev Biochem. 1988;57:261–283. doi: 10.1146/annurev.bi.57.070188.001401. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Budde R. J., Fang T. K., Randall D. D., Miernyk J. A. Acetyl-coenzyme a can regulate activity of the mitochondrial pyruvate dehydrogenase complex in situ. Plant Physiol. 1991 Jan;95(1):131–136. doi: 10.1104/pp.95.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Budinger T. F., McNeil B. J., Alderson P. O. Perspectives in nuclear medicine: pulmonary studies. J Nucl Med. 1982 Jan;23(1):60–65. [PubMed] [Google Scholar]
- Cederblad G., Lindstedt S. A method for the determination of carnitine in the picomole range. Clin Chim Acta. 1972 Mar;37:235–243. doi: 10.1016/0009-8981(72)90438-x. [DOI] [PubMed] [Google Scholar]
- Emaus R. K., Bieber L. L. A biosynthetic role for carnitine in the yeast Torulopsis bovina. J Biol Chem. 1983 Nov 10;258(21):13160–13165. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Markwell M. A., Tolbert N. E., Bieber L. L. Comparison of the carnitine acyltransferase activites from rat liver peroxisomes and microsomes. Arch Biochem Biophys. 1976 Oct;176(2):497–488. doi: 10.1016/0003-9861(76)90191-0. [DOI] [PubMed] [Google Scholar]
- Miflin B. J., Beevers H. Isolation of intact plastids from a range of plant tissues. Plant Physiol. 1974 Jun;53(6):870–874. doi: 10.1104/pp.53.6.870. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramsay R. R., Arduini A. The carnitine acyltransferases and their role in modulating acyl-CoA pools. Arch Biochem Biophys. 1993 May;302(2):307–314. doi: 10.1006/abbi.1993.1216. [DOI] [PubMed] [Google Scholar]
- Roughan G., Post-Beittenmiller D., Ohlrogge J., Browse J. Is Acetylcarnitine a Substrate for Fatty Acid Synthesis in Plants? Plant Physiol. 1993 Apr;101(4):1157–1162. doi: 10.1104/pp.101.4.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]