Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2000 Jan 7;267(1438):81–87. doi: 10.1098/rspb.2000.0970

A simple method of removing the effect of a bottleneck and unequal population sizes on pairwise genetic distances.

O E Gaggiotti 1, L Excoffier 1
PMCID: PMC1690496  PMID: 10670957

Abstract

In this paper, we derive the expectation of two popular genetic distances under a model of pure population fission allowing for unequal population sizes. Under the model, we show that conventional genetic distances are not proportional to the divergence time and generally overestimate it due to unequal genetic drift and to a bottleneck effect at the divergence time. This bias cannot be totally removed even if the present population sizes are known. Instead, we present a method to estimate the divergence times between populations which is based on the average number of nucleotide differences within and between populations. The method simultaneously estimates the divergence time, the ancestral population size and the relative sizes of the derived populations. A simulation study revealed that this method is essentially unbiased and that it leads to better estimates than traditional approaches for a very wide range of parameter values. Simulations also indicated that moderate population growth after divergence has little effect on the estimates of all three estimated parameters. An application of our method to a comparison of humans and chimpanzee mitochondrial DNA diversity revealed that common chimpanzees have a significantly larger female population size than humans.

Full Text

The Full Text of this article is available as a PDF (262.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bertorelle G., Excoffier L. Inferring admixture proportions from molecular data. Mol Biol Evol. 1998 Oct;15(10):1298–1311. doi: 10.1093/oxfordjournals.molbev.a025858. [DOI] [PubMed] [Google Scholar]
  2. Chakraborty R., Nei M. Dynamics of gene differentiation between incompletely isolated populations of unequal sizes. Theor Popul Biol. 1974 Jun;5(3):460–469. doi: 10.1016/0040-5809(74)90064-1. [DOI] [PubMed] [Google Scholar]
  3. Chakraborty R., Nei M. Hidden genetic variability within electromorphs in finite populations. Genetics. 1976 Oct;84(2):385–393. doi: 10.1093/genetics/84.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Charlesworth B. Measures of divergence between populations and the effect of forces that reduce variability. Mol Biol Evol. 1998 May;15(5):538–543. doi: 10.1093/oxfordjournals.molbev.a025953. [DOI] [PubMed] [Google Scholar]
  5. Cockerham C. C. Analyses of gene frequencies. Genetics. 1973 Aug;74(4):679–700. doi: 10.1093/genetics/74.4.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Excoffier L., Yang Z. Substitution rate variation among sites in mitochondrial hypervariable region I of humans and chimpanzees. Mol Biol Evol. 1999 Oct;16(10):1357–1368. doi: 10.1093/oxfordjournals.molbev.a026046. [DOI] [PubMed] [Google Scholar]
  7. Felsenstein J. How can we infer geography and history from gene frequencies? J Theor Biol. 1982 May 7;96(1):9–20. doi: 10.1016/0022-5193(82)90152-7. [DOI] [PubMed] [Google Scholar]
  8. Gagneux P., Wills C., Gerloff U., Tautz D., Morin P. A., Boesch C., Fruth B., Hohmann G., Ryder O. A., Woodruff D. S. Mitochondrial sequences show diverse evolutionary histories of African hominoids. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5077–5082. doi: 10.1073/pnas.96.9.5077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goldstein D. B., Ruiz Linares A., Cavalli-Sforza L. L., Feldman M. W. Genetic absolute dating based on microsatellites and the origin of modern humans. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6723–6727. doi: 10.1073/pnas.92.15.6723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Holsinger K. E., Mason-Gamer R. J. Hierarchical analysis of nucleotide diversity in geographically structured populations. Genetics. 1996 Feb;142(2):629–639. doi: 10.1093/genetics/142.2.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Horai S., Satta Y., Hayasaka K., Kondo R., Inoue T., Ishida T., Hayashi S., Takahata N. Man's place in Hominoidea revealed by mitochondrial DNA genealogy. J Mol Evol. 1992 Jul;35(1):32–43. doi: 10.1007/BF00160258. [DOI] [PubMed] [Google Scholar]
  12. Jin L., Nei M. Limitations of the evolutionary parsimony method of phylogenetic analysis. Mol Biol Evol. 1990 Jan;7(1):82–102. doi: 10.1093/oxfordjournals.molbev.a040588. [DOI] [PubMed] [Google Scholar]
  13. Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3321–3323. doi: 10.1073/pnas.70.12.3321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nei M., Li W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269–5273. doi: 10.1073/pnas.76.10.5269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nei M., Miller J. C. A simple method for estimating average number of nucleotide substitutions within and between populations from restriction data. Genetics. 1990 Aug;125(4):873–879. doi: 10.1093/genetics/125.4.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nei M., Tajima F. Maximum likelihood estimation of the number of nucleotide substitutions from restriction sites data. Genetics. 1983 Sep;105(1):207–217. doi: 10.1093/genetics/105.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Relethford J. H. Effect of changes in population size on genetic microdifferentiation. Hum Biol. 1991 Oct;63(5):629–641. [PubMed] [Google Scholar]
  18. Relethford J. H. Genetic drift can obscure population history: problem and solution. Hum Biol. 1996 Feb;68(1):29–44. [PubMed] [Google Scholar]
  19. Slatkin M. A measure of population subdivision based on microsatellite allele frequencies. Genetics. 1995 Jan;139(1):457–462. doi: 10.1093/genetics/139.1.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Slatkin M. Inbreeding coefficients and coalescence times. Genet Res. 1991 Oct;58(2):167–175. doi: 10.1017/s0016672300029827. [DOI] [PubMed] [Google Scholar]
  21. Takahata N., Nei M. Gene genealogy and variance of interpopulational nucleotide differences. Genetics. 1985 Jun;110(2):325–344. doi: 10.1093/genetics/110.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Takahata N., Satta Y., Klein J. Divergence time and population size in the lineage leading to modern humans. Theor Popul Biol. 1995 Oct;48(2):198–221. doi: 10.1006/tpbi.1995.1026. [DOI] [PubMed] [Google Scholar]
  23. Vigilant L., Pennington R., Harpending H., Kocher T. D., Wilson A. C. Mitochondrial DNA sequences in single hairs from a southern African population. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9350–9354. doi: 10.1073/pnas.86.23.9350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wakeley J., Hey J. Estimating ancestral population parameters. Genetics. 1997 Mar;145(3):847–855. doi: 10.1093/genetics/145.3.847. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES