Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2000 Jan 22;267(1439):165–169. doi: 10.1098/rspb.2000.0982

The evolution of song repertoires and immune defence in birds.

A P Møller 1, P Y Henry 1, J Erritzøe 1
PMCID: PMC1690510  PMID: 10687822

Abstract

Song repertoires (the number of different song types sung by a male) in birds provide males with an advantage in sexual selection because females prefer males with large repertoires, and females may benefit because offspring sired by preferred males have high viability. Furthermore, males with large repertoires suffer less from malarial parasites, indicating that a large repertoire may reflect health status. We hypothesize that sexual selection may cause a coevolutionary increase in parasite virulence and host immune defence because sexual selection increases the risk of multiple infections that select for high virulence. Alternatively, a female mate preference for healthy males will affect the coevolutionary dynamics of host-parasite interactions by selecting for increased virulence and hence high investment by hosts in immune function. In a comparative study of birds, repertoire size and relative size of the spleen, which is an important immune defence organ, were strongly, positively correlated accounting for almost half of the variance. This finding suggests that host-parasite interactions have played an important role in the evolution of song repertoires in birds.

Full Text

The Full Text of this article is available as a PDF (193.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buchanan KL, Catchpole CK, Lewis JW, Lodge A. Song as an indicator of parasitism in the sedge warbler. Anim Behav. 1999 Feb;57(2):307–314. doi: 10.1006/anbe.1998.0969. [DOI] [PubMed] [Google Scholar]
  2. Canady R. A., Kroodsma D. E., Nottebohm F. Population differences in complexity of a learned skill are correlated with the brain space involved. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6232–6234. doi: 10.1073/pnas.81.19.6232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Devoogd T. J., Krebs J. R., Healy S. D., Purvis A. Relations between song repertoire size and the volume of brain nuclei related to song: comparative evolutionary analyses amongst oscine birds. Proc Biol Sci. 1993 Nov 22;254(1340):75–82. doi: 10.1098/rspb.1993.0129. [DOI] [PubMed] [Google Scholar]
  4. Dolinsky Z. S., Burright R. G., Donovick P. J., Glickman L. T., Babish J., Summers B., Cypess R. H. Behavioral effects of lead and Toxocara canis in mice. Science. 1981 Sep 4;213(4512):1142–1144. doi: 10.1126/science.7268424. [DOI] [PubMed] [Google Scholar]
  5. Frank S. A. Models of parasite virulence. Q Rev Biol. 1996 Mar;71(1):37–78. doi: 10.1086/419267. [DOI] [PubMed] [Google Scholar]
  6. Hamilton W. D., Zuk M. Heritable true fitness and bright birds: a role for parasites? Science. 1982 Oct 22;218(4570):384–387. doi: 10.1126/science.7123238. [DOI] [PubMed] [Google Scholar]
  7. John J. L. Nematodes and the spleen: an immunological relationship. Experientia. 1994 Jan 15;50(1):15–22. doi: 10.1007/BF01992043. [DOI] [PubMed] [Google Scholar]
  8. John J. L. The avian spleen: a neglected organ. Q Rev Biol. 1994 Sep;69(3):327–351. doi: 10.1086/418649. [DOI] [PubMed] [Google Scholar]
  9. KERSHAW W. E., LEYTHAM G. W., DICKERSON G. The effect of schistosomiasis on animal intelligence. Ann Trop Med Parasitol. 1959 Dec;53:504–506. doi: 10.1080/00034983.1959.11685949. [DOI] [PubMed] [Google Scholar]
  10. Kvalsvig J. D., Cooppan R. M., Connolly K. J. The effects of parasite infections on cognitive processes in children. Ann Trop Med Parasitol. 1991 Oct;85(5):551–568. doi: 10.1080/00034983.1991.11812608. [DOI] [PubMed] [Google Scholar]
  11. Møller A. P., Christe P., Lux E. Parasitism, host immune function, and sexual selection. Q Rev Biol. 1999 Mar;74(1):3–20. doi: 10.1086/392949. [DOI] [PubMed] [Google Scholar]
  12. Nokes C., Grantham-McGregor S. M., Sawyer A. W., Cooper E. S., Robinson B. A., Bundy D. A. Moderate to heavy infections of Trichuris trichiura affect cognitive function in Jamaican school children. Parasitology. 1992 Jun;104(Pt 3):539–547. doi: 10.1017/s0031182000063800. [DOI] [PubMed] [Google Scholar]
  13. Nottebohm F., Kasparian S., Pandazis C. Brain space for a learned task. Brain Res. 1981 May 25;213(1):99–109. doi: 10.1016/0006-8993(81)91250-6. [DOI] [PubMed] [Google Scholar]
  14. Nottebohm F., Nottebohm M. E., Crane L. Developmental and seasonal changes in canary song and their relation to changes in the anatomy of song-control nuclei. Behav Neural Biol. 1986 Nov;46(3):445–471. doi: 10.1016/s0163-1047(86)90485-1. [DOI] [PubMed] [Google Scholar]
  15. Olson L. J., Rose J. E. Effect of Toxocara canis infection on the ability of white rats to solve maze problems. Exp Parasitol. 1966 Aug;19(1):77–84. doi: 10.1016/0014-4894(66)90055-5. [DOI] [PubMed] [Google Scholar]
  16. doi: 10.1098/rspb.1997.0080. [DOI] [PMC free article] [Google Scholar]
  17. Purvis A., Rambaut A. Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data. Comput Appl Biosci. 1995 Jun;11(3):247–251. doi: 10.1093/bioinformatics/11.3.247. [DOI] [PubMed] [Google Scholar]
  18. van Baalen M. Coevolution of recovery ability and virulence. Proc Biol Sci. 1998 Feb 22;265(1393):317–325. doi: 10.1098/rspb.1998.0298. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
10687822s01.pdf (55.8KB, pdf)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES