Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2000 Feb 22;267(1441):327–332. doi: 10.1098/rspb.2000.1004

The inheritance of female preference functions in a mate recognition system.

M G Ritchie 1
PMCID: PMC1690534  PMID: 10722212

Abstract

Mate recognition systems (MRSs) play a major role in sexual selection and speciation, yet few studies have analysed both male and female components in detail. Here, female preference functions have been characterized for the tettigoniid bushcricket Ephippiger ephippiger, and the inheritance of male song and female preference functions followed in crosses between subspecies. Songs are disproportionately determined by sex-linked genes. However, there is no evidence for a role of maternally derived sex-linked genes in female preference or of maternal effects. At the genetic level, there is a mismatch between peak preferences and male song, consistent with an evolutionary history of persistent directional preferences. Such a pattern of inheritance could contribute to the process of speciation via the evolution of new MRSs.

Full Text

The Full Text of this article is available as a PDF (196.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basolo A. L. Evolutionary change in a receiver bias: a comparison of female preference functions. Proc Biol Sci. 1998 Nov 22;265(1411):2223–2228. doi: 10.1098/rspb.1998.0563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ewing A. W. The genetic basis of sound production in Drosophila pseudoobscura and D. persimilis. Anim Behav. 1969 Aug;17(3):555–560. doi: 10.1016/0003-3472(69)90164-x. [DOI] [PubMed] [Google Scholar]
  3. Hastings I. M. Manifestations of sexual selection may depend on the genetic bases of sex determination. Proc Biol Sci. 1994 Oct 22;258(1351):83–87. doi: 10.1098/rspb.1994.0146. [DOI] [PubMed] [Google Scholar]
  4. Hastings I. M., Veerkamp R. F. The genetic basis of response in mouse lines divergently selected for body weight or fat content. I. The relative contributions of autosomal and sex-linked genes. Genet Res. 1993 Dec;62(3):169–175. doi: 10.1017/s0016672300031876. [DOI] [PubMed] [Google Scholar]
  5. Hollocher H., Ting C. T., Wu M. L., Wu C. I. Incipient speciation by sexual isolation in Drosophila melanogaster: extensive genetic divergence without reinforcement. Genetics. 1997 Nov;147(3):1191–1201. doi: 10.1093/genetics/147.3.1191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hoy R. R., Hahn J., Paul R. C. Hybrid cricket auditory behavior: evidence for genetic coupling in animal communication. Science. 1977 Jan 7;195(4273):82–84. doi: 10.1126/science.831260. [DOI] [PubMed] [Google Scholar]
  7. Jennions M. D., Petrie M. Variation in mate choice and mating preferences: a review of causes and consequences. Biol Rev Camb Philos Soc. 1997 May;72(2):283–327. doi: 10.1017/s0006323196005014. [DOI] [PubMed] [Google Scholar]
  8. Lande R. Models of speciation by sexual selection on polygenic traits. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3721–3725. doi: 10.1073/pnas.78.6.3721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Noor M. A. Reinforcement and other consequences of sympatry. Heredity (Edinb) 1999 Nov;83(Pt 5):503–508. doi: 10.1038/sj.hdy.6886320. [DOI] [PubMed] [Google Scholar]
  10. doi: 10.1098/rspb.1997.0118. [DOI] [PMC free article] [Google Scholar]
  11. doi: 10.1098/rstb.1998.0207. [DOI] [PMC free article] [Google Scholar]
  12. Ritchie M. G. Behavioral coupling in tettigoniid hybrids (Orthoptera). Behav Genet. 1992 May;22(3):369–379. doi: 10.1007/BF01066668. [DOI] [PubMed] [Google Scholar]
  13. Ryan M. J., Rand A. S. Female responses to ancestral advertisement calls in tungara frogs. Science. 1995 Jul 21;269(5222):390–392. doi: 10.1126/science.269.5222.390. [DOI] [PubMed] [Google Scholar]
  14. Ting C. T., Tsaur S. C., Wu M. L., Wu C. I. A rapidly evolving homeobox at the site of a hybrid sterility gene. Science. 1998 Nov 20;282(5393):1501–1504. doi: 10.1126/science.282.5393.1501. [DOI] [PubMed] [Google Scholar]
  15. Wagner WE. Measuring female mating preferences. Anim Behav. 1998 Apr;55(4):1029–1042. doi: 10.1006/anbe.1997.0635. [DOI] [PubMed] [Google Scholar]
  16. Welch A. M., Semlitsch R. D., Gerhardt H. C. Call duration as an indicator of genetic quality in male gray tree frogs. Science. 1998 Jun 19;280(5371):1928–1930. doi: 10.1126/science.280.5371.1928. [DOI] [PubMed] [Google Scholar]
  17. Wheeler D. A., Kyriacou C. P., Greenacre M. L., Yu Q., Rutila J. E., Rosbash M., Hall J. C. Molecular transfer of a species-specific behavior from Drosophila simulans to Drosophila melanogaster. Science. 1991 Mar 1;251(4997):1082–1085. doi: 10.1126/science.1900131. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES