Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2000 Feb 22;267(1441):393–402. doi: 10.1098/rspb.2000.1014

Variance of molecular datings, evolution of rodents and the phylogenetic affinities between Ctenodactylidae and Hystricognathi.

D Huchon 1, F M Catzeflis 1, E J Douzery 1
PMCID: PMC1690539  PMID: 10722222

Abstract

The von Willebrand factor (vWF) gene has been used to understand the origin and timing of Rodentia evolution in the context of placental phylogeny vWF exon 28 sequences of 15 rodent families and eight non-rodent eutherian clades are analysed with two different molecular dating methods (uniform clock on a linearized tree; quartet dating). Three main conclusions are drawn from the study of this nuclear exon. First, Ctenodactylidae (gundis) and Hystricognathi (e.g. porcupines, guinea-pigs, chinchillas) robustly cluster together in a newly recognized clade, named 'Ctenohystrica'. The Sciurognathi monophyly is subsequently rejected. Pedetidae (springhares) is an independent and early diverging rodent lineage, suggesting a convergent evolution of the multiserial enamel of rodent incisors. Second, molecular date estimates are here more influenced by accuracy and choice of the palaeontological temporal references used to calibrate the molecular clock than by either characters analysed (nucleotides versus amino acids) or species sampling. The caviomorph radiation at 31 million years (Myr) and the pig porpoise split at 63 Myr appear to be reciprocally compatible dates. Third, during the radiation of Rodentia, at least three lineages (Gliridae, Sciuroidea and Ctenohystrica) emerged close to the Cretaceous-Tertiary boundary, and their common ancestor separated from other placental orders in the Late Cretaceous.

Full Text

The Full Text of this article is available as a PDF (263.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnason U., Gullberg A., Janke A., Xu X. Pattern and timing of evolutionary divergences among hominoids based on analyses of complete mtDNAs. J Mol Evol. 1996 Dec;43(6):650–661. doi: 10.1007/BF02202113. [DOI] [PubMed] [Google Scholar]
  2. Beintema J. J., Rodewald K., Braunitzer G., Czelusniak J., Goodman M. Studies on the phylogenetic position of the Ctenodactylidae (Rodentia) Mol Biol Evol. 1991 Jan;8(1):151–154. doi: 10.1093/oxfordjournals.molbev.a040635. [DOI] [PubMed] [Google Scholar]
  3. Bromham L, Phillips MJ, Penny D. Growing up with dinosaurs: molecular dates and the mammalian radiation. Trends Ecol Evol. 1999 Mar;14(3):113–118. doi: 10.1016/s0169-5347(98)01507-9. [DOI] [PubMed] [Google Scholar]
  4. Graur D., Hide W. A., Li W. H. Is the guinea-pig a rodent? Nature. 1991 Jun 20;351(6328):649–652. doi: 10.1038/351649a0. [DOI] [PubMed] [Google Scholar]
  5. Huchon D., Catzeflis F. M., Douzery E. J. Molecular evolution of the nuclear von Willebrand factor gene in mammals and the phylogeny of rodents. Mol Biol Evol. 1999 May;16(5):577–589. doi: 10.1093/oxfordjournals.molbev.a026140. [DOI] [PubMed] [Google Scholar]
  6. Janke A., Xu X., Arnason U. The complete mitochondrial genome of the wallaroo (Macropus robustus) and the phylogenetic relationship among Monotremata, Marsupialia, and Eutheria. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1276–1281. doi: 10.1073/pnas.94.4.1276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kishino H., Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol. 1989 Aug;29(2):170–179. doi: 10.1007/BF02100115. [DOI] [PubMed] [Google Scholar]
  8. Kramerov D., Vassetzky N., Serdobova I. The evolutionary position of dormice (Gliridae) in Rodentia determined by a novel short retroposon. Mol Biol Evol. 1999 May;16(5):715–717. doi: 10.1093/oxfordjournals.molbev.a026155. [DOI] [PubMed] [Google Scholar]
  9. Kumar S., Hedges S. B. A molecular timescale for vertebrate evolution. Nature. 1998 Apr 30;392(6679):917–920. doi: 10.1038/31927. [DOI] [PubMed] [Google Scholar]
  10. Li W. H., Hide W. A., Zharkikh A., Ma D. P., Graur D. The molecular taxonomy and evolution of the guinea pig. J Hered. 1992 May-Jun;83(3):174–181. doi: 10.1093/oxfordjournals.jhered.a111188. [DOI] [PubMed] [Google Scholar]
  11. Matthee C. A., Robinson T. J. Molecular phylogeny of the springhare, Pedetes capensis, based on mitochondrial DNA sequences. Mol Biol Evol. 1997 Jan;14(1):20–29. doi: 10.1093/oxfordjournals.molbev.a025698. [DOI] [PubMed] [Google Scholar]
  12. Porter C. A., Goodman M., Stanhope M. J. Evidence on mammalian phylogeny from sequences of exon 28 of the von Willebrand factor gene. Mol Phylogenet Evol. 1996 Feb;5(1):89–101. doi: 10.1006/mpev.1996.0008. [DOI] [PubMed] [Google Scholar]
  13. Rambaut A., Bromham L. Estimating divergence dates from molecular sequences. Mol Biol Evol. 1998 Apr;15(4):442–448. doi: 10.1093/oxfordjournals.molbev.a025940. [DOI] [PubMed] [Google Scholar]
  14. Reyes A., Pesole G., Saccone C. Complete mitochondrial DNA sequence of the fat dormouse, Glis glis: further evidence of rodent paraphyly. Mol Biol Evol. 1998 May;15(5):499–505. doi: 10.1093/oxfordjournals.molbev.a025949. [DOI] [PubMed] [Google Scholar]
  15. Stanhope M. J., Madsen O., Waddell V. G., Cleven G. C., de Jong W. W., Springer M. S. Highly congruent molecular support for a diverse superordinal clade of endemic African mammals. Mol Phylogenet Evol. 1998 Jun;9(3):501–508. doi: 10.1006/mpev.1998.0517. [DOI] [PubMed] [Google Scholar]
  16. Takezaki N., Rzhetsky A., Nei M. Phylogenetic test of the molecular clock and linearized trees. Mol Biol Evol. 1995 Sep;12(5):823–833. doi: 10.1093/oxfordjournals.molbev.a040259. [DOI] [PubMed] [Google Scholar]
  17. Thorne J. L., Kishino H., Painter I. S. Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol. 1998 Dec;15(12):1647–1657. doi: 10.1093/oxfordjournals.molbev.a025892. [DOI] [PubMed] [Google Scholar]
  18. Waddell P. J., Cao Y., Hasegawa M., Mindell D. P. Assessing the Cretaceous superordinal divergence times within birds and placental mammals by using whole mitochondrial protein sequences and an extended statistical framework. Syst Biol. 1999 Mar;48(1):119–137. doi: 10.1080/106351599260481. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES