Abstract
The present study investigated the inhibitory effect of visual distractors on the latency of saccades made by hemianopic and normal human subjects. The latency of saccades made by hemianopic subjects to stimuli in their intact visual field was not affected by visual distractors presented within their hemianopic field. In contrast, the latency of saccades made by normal subjects was increased significantly under distractor conditions. The latency increase was larger for temporal than nasal distractors. The results are inconsistent with previous proposals that the crossed retinotectal pathway from the nasal hemiretina to the superior colliculus may mediate a blindsight inhibitory effect when distractors appear within a hemianopic temporal visual field. Instead, the distractor effect appears to reflect the normal processes involved in saccade target selection which may be mediated by a circuit involving both cortical and subcortical structures.
Full Text
The Full Text of this article is available as a PDF (250.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barbur J. L., Forsyth P. M., Findlay J. M. Human saccadic eye movements in the absence of the geniculocalcarine projection. Brain. 1988 Feb;111(Pt 1):63–82. doi: 10.1093/brain/111.1.63. [DOI] [PubMed] [Google Scholar]
- Blythe I. M., Kennard C., Ruddock K. H. Residual vision in patients with retrogeniculate lesions of the visual pathways. Brain. 1987 Aug;110(Pt 4):887–905. doi: 10.1093/brain/110.4.887. [DOI] [PubMed] [Google Scholar]
- Braddick O., Atkinson J., Hood B., Harkness W., Jackson G., Vargha-Khadem F. Possible blindsight in infants lacking one cerebral hemisphere. Nature. 1992 Dec 3;360(6403):461–463. doi: 10.1038/360461a0. [DOI] [PubMed] [Google Scholar]
- Corbetta M., Marzi C. A., Tassinari G., Aglioti S. Effectiveness of different task paradigms in revealing blindsight. Brain. 1990 Jun;113(Pt 3):603–616. doi: 10.1093/brain/113.3.603. [DOI] [PubMed] [Google Scholar]
- Curcio C. A., Allen K. A. Topography of ganglion cells in human retina. J Comp Neurol. 1990 Oct 1;300(1):5–25. doi: 10.1002/cne.903000103. [DOI] [PubMed] [Google Scholar]
- Findlay J. M., Walker R. A model of saccade generation based on parallel processing and competitive inhibition. Behav Brain Sci. 1999 Aug;22(4):661–721. doi: 10.1017/s0140525x99002150. [DOI] [PubMed] [Google Scholar]
- Marzi C. A., Tassinari G., Aglioti S., Lutzemberger L. Spatial summation across the vertical meridian in hemianopics: a test of blindsight. Neuropsychologia. 1986;24(6):749–758. doi: 10.1016/0028-3932(86)90074-6. [DOI] [PubMed] [Google Scholar]
- Moschovakis A. K., Karabelas A. B., Highstein S. M. Structure-function relationships in the primate superior colliculus. I. Morphological classification of efferent neurons. J Neurophysiol. 1988 Jul;60(1):232–262. doi: 10.1152/jn.1988.60.1.232. [DOI] [PubMed] [Google Scholar]
- Moschovakis A. K., Karabelas A. B., Highstein S. M. Structure-function relationships in the primate superior colliculus. II. Morphological identity of presaccadic neurons. J Neurophysiol. 1988 Jul;60(1):263–302. doi: 10.1152/jn.1988.60.1.263. [DOI] [PubMed] [Google Scholar]
- Munoz D. P., Wurtz R. H. Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge. J Neurophysiol. 1993 Aug;70(2):559–575. doi: 10.1152/jn.1993.70.2.559. [DOI] [PubMed] [Google Scholar]
- Munoz D. P., Wurtz R. H. Fixation cells in monkey superior colliculus. II. Reversible activation and deactivation. J Neurophysiol. 1993 Aug;70(2):576–589. doi: 10.1152/jn.1993.70.2.576. [DOI] [PubMed] [Google Scholar]
- Munoz D. P., Wurtz R. H. Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. J Neurophysiol. 1995 Jun;73(6):2313–2333. doi: 10.1152/jn.1995.73.6.2313. [DOI] [PubMed] [Google Scholar]
- Munoz D. P., Wurtz R. H. Saccade-related activity in monkey superior colliculus. II. Spread of activity during saccades. J Neurophysiol. 1995 Jun;73(6):2334–2348. doi: 10.1152/jn.1995.73.6.2334. [DOI] [PubMed] [Google Scholar]
- Perry V. H., Oehler R., Cowey A. Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience. 1984 Aug;12(4):1101–1123. doi: 10.1016/0306-4522(84)90006-x. [DOI] [PubMed] [Google Scholar]
- Poppel E., Held R., Frost D. Leter: Residual visual function after brain wounds involving the central visual pathways in man. Nature. 1973 Jun 1;243(5405):295–296. doi: 10.1038/243295a0. [DOI] [PubMed] [Google Scholar]
- Rafal R., Smith J., Krantz J., Cohen A., Brennan C. Extrageniculate vision in hemianopic humans: saccade inhibition by signals in the blind field. Science. 1990 Oct 5;250(4977):118–121. doi: 10.1126/science.2218503. [DOI] [PubMed] [Google Scholar]
- Robinson D. L., McClurkin J. W. The visual superior colliculus and pulvinar. Rev Oculomot Res. 1989;3:337–360. [PubMed] [Google Scholar]
- Sanders M. D., Warrington E. K., Marshall J., Wieskrantz L. "Blindsight": Vision in a field defect. Lancet. 1974 Apr 20;1(7860):707–708. doi: 10.1016/s0140-6736(74)92907-9. [DOI] [PubMed] [Google Scholar]
- Schall J. D. Neural basis of saccade target selection. Rev Neurosci. 1995 Jan-Mar;6(1):63–85. doi: 10.1515/revneuro.1995.6.1.63. [DOI] [PubMed] [Google Scholar]
- Schiller P. H., Koerner F. Discharge characteristics of single units in superior colliculus of the alert rhesus monkey. J Neurophysiol. 1971 Sep;34(5):920–936. doi: 10.1152/jn.1971.34.5.920. [DOI] [PubMed] [Google Scholar]
- Schiller P. H. The central visual system. Vision Res. 1986;26(9):1351–1386. doi: 10.1016/0042-6989(86)90162-8. [DOI] [PubMed] [Google Scholar]
- Sparks D. L., Hartwich-Young R. The deep layers of the superior colliculus. Rev Oculomot Res. 1989;3:213–255. [PubMed] [Google Scholar]
- Sterling P. Quantitative mapping with the electron microscope: retinal terminals in the superior colliculus. Brain Res. 1973 May 17;54:347–354. doi: 10.1016/0006-8993(73)90059-0. [DOI] [PubMed] [Google Scholar]
- Walker R., Deubel H., Schneider W. X., Findlay J. M. Effect of remote distractors on saccade programming: evidence for an extended fixation zone. J Neurophysiol. 1997 Aug;78(2):1108–1119. doi: 10.1152/jn.1997.78.2.1108. [DOI] [PubMed] [Google Scholar]
- Walker R., Findlay J. M. Saccadic eye movement programming in unilateral neglect. Neuropsychologia. 1996 Jun;34(6):493–508. doi: 10.1016/0028-3932(95)00156-5. [DOI] [PubMed] [Google Scholar]
- Walker R., Kentridge R. W., Findlay J. M. Independent contributions of the orienting of attention, fixation offset and bilateral stimulation on human saccadic latencies. Exp Brain Res. 1995;103(2):294–310. doi: 10.1007/BF00231716. [DOI] [PubMed] [Google Scholar]
- Weiskrantz L., Warrington E. K., Sanders M. D., Marshall J. Visual capacity in the hemianopic field following a restricted occipital ablation. Brain. 1974 Dec;97(4):709–728. doi: 10.1093/brain/97.1.709. [DOI] [PubMed] [Google Scholar]
- Williams C., Azzopardi P., Cowey A. Nasal and temporal retinal ganglion cells projecting to the midbrain: implications for "blindsight". Neuroscience. 1995 Mar;65(2):577–586. doi: 10.1016/0306-4522(94)00489-r. [DOI] [PubMed] [Google Scholar]
- Zihl J. "Blindsight": improvement of visually guided eye movements by systematic practice in patients with cerebral blindness. Neuropsychologia. 1980;18(1):71–77. doi: 10.1016/0028-3932(80)90085-8. [DOI] [PubMed] [Google Scholar]
- Zihl J., von Cramon D. Registration of light stimuli in the cortically blind hemifield and its effect on localization. Behav Brain Res. 1980 Aug;1(4):287–298. doi: 10.1016/0166-4328(80)90022-4. [DOI] [PubMed] [Google Scholar]