Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2000 Mar 7;267(1442):479–484. doi: 10.1098/rspb.2000.1025

Energy assimilation, parental care and the evolution of endothermy.

P Koteja 1
PMCID: PMC1690555  PMID: 10737405

Abstract

The question of the selection forces which initiated the evolution of endothermy in birds and mammals is one of the most intriguing in the evolutionary physiology of vertebrates. Many students regard the aerobic capacity model as the most plausible hypothesis. This paper presents an alternative model, in which the evolution of endothermy in birds and mammals was driven by two factors: (i) a selection for intense post-hatching parental care, particularly feeding offspring, and (ii) the high cost of maintaining the increased capacity of the visceral organs necessary to support high rates of total daily energy expenditures.

Full Text

The Full Text of this article is available as a PDF (198.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett A. F., Ruben J. A. Endothermy and activity in vertebrates. Science. 1979 Nov 9;206(4419):649–654. doi: 10.1126/science.493968. [DOI] [PubMed] [Google Scholar]
  2. Bennett A. F. The evolution of activity capacity. J Exp Biol. 1991 Oct;160:1–23. doi: 10.1242/jeb.160.1.1. [DOI] [PubMed] [Google Scholar]
  3. Clausen T., Van Hardeveld C., Everts M. E. Significance of cation transport in control of energy metabolism and thermogenesis. Physiol Rev. 1991 Jul;71(3):733–774. doi: 10.1152/physrev.1991.71.3.733. [DOI] [PubMed] [Google Scholar]
  4. Daan S., Masman D., Groenewold A. Avian basal metabolic rates: their association with body composition and energy expenditure in nature. Am J Physiol. 1990 Aug;259(2 Pt 2):R333–R340. doi: 10.1152/ajpregu.1990.259.2.R333. [DOI] [PubMed] [Google Scholar]
  5. Else P. L., Hulbert A. J. An allometric comparison of the mitochondria of mammalian and reptilian tissues: the implications for the evolution of endothermy. J Comp Physiol B. 1985;156(1):3–11. doi: 10.1007/BF00692920. [DOI] [PubMed] [Google Scholar]
  6. Garland T., Jr, Carter P. A. Evolutionary physiology. Annu Rev Physiol. 1994;56:579–621. doi: 10.1146/annurev.ph.56.030194.003051. [DOI] [PubMed] [Google Scholar]
  7. Hammond K. A., Diamond J. Maximal sustained energy budgets in humans and animals. Nature. 1997 Apr 3;386(6624):457–462. doi: 10.1038/386457a0. [DOI] [PubMed] [Google Scholar]
  8. Karasov W. H., Diamond J. M. Digestive adaptations for fueling the cost of endothermy. Science. 1985 Apr 12;228(4696):202–204. doi: 10.1126/science.3975638. [DOI] [PubMed] [Google Scholar]
  9. Konarzewski M., Sadowski B., Jówik I. Metabolic correlates of selection for swim stress-induced analgesia in laboratory mice. Am J Physiol. 1997 Jul;273(1 Pt 2):R337–R343. doi: 10.1152/ajpregu.1997.273.1.R337. [DOI] [PubMed] [Google Scholar]
  10. Koteja P. On the relation between basal and maximum metabolic rate in mammals. Comp Biochem Physiol A Comp Physiol. 1987;87(1):205–208. doi: 10.1016/0300-9629(87)90447-6. [DOI] [PubMed] [Google Scholar]
  11. Koteja P., Swallow J. G., Carter P. A., Garland T., Jr Energy cost of wheel running in house mice: implications for coadaptation of locomotion and energy budgets. Physiol Biochem Zool. 1999 Mar-Apr;72(2):238–249. doi: 10.1086/316653. [DOI] [PubMed] [Google Scholar]
  12. Koteja P, Garland T, Jr, Sax JK, Swallow JG, Carter PA. Behaviour of house mice artificially selected for high levels of voluntary wheel running. Anim Behav. 1999 Dec;58(6):1307–1318. doi: 10.1006/anbe.1999.1270. [DOI] [PubMed] [Google Scholar]
  13. Ruben J. The evolution of endothermy in mammals and birds: from physiology to fossils. Annu Rev Physiol. 1995;57:69–95. doi: 10.1146/annurev.ph.57.030195.000441. [DOI] [PubMed] [Google Scholar]
  14. Ruben JA, Dal Sasso C, Geist NR, Hillenius WJ, Jones TD, Signore M. Pulmonary function and metabolic physiology of theropod dinosaurs . Science. 1999 Jan 22;283(5401):514–516. doi: 10.1126/science.283.5401.514. [DOI] [PubMed] [Google Scholar]
  15. Swallow J. G., Carter P. A., Garland T., Jr Artificial selection for increased wheel-running behavior in house mice. Behav Genet. 1998 May;28(3):227–237. doi: 10.1023/a:1021479331779. [DOI] [PubMed] [Google Scholar]
  16. Swallow J. G., Garland T., Jr, Carter P. A., Zhan W. Z., Sieck G. C. Effects of voluntary activity and genetic selection on aerobic capacity in house mice (Mus domesticus). J Appl Physiol (1985) 1998 Jan;84(1):69–76. doi: 10.1152/jappl.1998.84.1.69. [DOI] [PubMed] [Google Scholar]
  17. Szarski H. Cell size and the concept of wasteful and frugal evolutionary strategies. J Theor Biol. 1983 Nov 21;105(2):201–209. doi: 10.1016/s0022-5193(83)80002-2. [DOI] [PubMed] [Google Scholar]
  18. Wilmore J. H., Stanforth P. R., Hudspeth L. A., Gagnon J., Daw E. W., Leon A. S., Rao D. C., Skinner J. S., Bouchard C. Alterations in resting metabolic rate as a consequence of 20 wk of endurance training: the HERITAGE Family Study. Am J Clin Nutr. 1998 Jul;68(1):66–71. doi: 10.1093/ajcn/68.1.66. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
10737405s01.pdf (18.6KB, pdf)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES