Abstract
It has been suggested that the major advantage of trichromatic over dichromatic colour vision in primates is enhanced detection of red/yellow food items such as fruit against the dappled foliage of the forest. This hypothesis was tested by comparing the foraging ability of dichromatic and trichromatic Geoffroy's marmosets (Callithrix geoffroyi) for orange- and green-coloured cereal balls (Kix) in a naturalized captive setting. Trichromatic marmosets found a significantly greater number of orange, but not green, Kix than dichromatic marmosets when the food items were scattered on the floor of the cage (at a potential detection distance of up to 6 m from the animals). Under these conditions, trichromats but not dichromats found significantly more orange than green Kix, an effect that was also evident when separately examining the data from the end of the trials, when the least conspicuous Kix were left. In contrast, no significant differences among trichromats and dichromats were seen when the Kix were placed in trays among green wood shavings (detection distance < 0.5 m). These results support an advantage for trichromats in detecting orange-coloured food items against foliage, and also suggest that this advantage may be less important at shorter distances. If such a foraging advantage for trichromats is present in the wild it might be sufficient to maintain the colour vision polymorphism seen in the majority of New World monkeys.
Full Text
The Full Text of this article is available as a PDF (223.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Garza J. C., Woodruff D. S. A phylogenetic study of the gibbons (Hylobates) using DNA obtained noninvasively from hair. Mol Phylogenet Evol. 1992 Sep;1(3):202–210. doi: 10.1016/1055-7903(92)90016-a. [DOI] [PubMed] [Google Scholar]
- Hunt D. M., Williams A. J., Bowmaker J. K., Mollon J. D. Structure and evolution of the polymorphic photopigment gene of the marmoset. Vision Res. 1993 Jan;33(2):147–154. doi: 10.1016/0042-6989(93)90153-n. [DOI] [PubMed] [Google Scholar]
- Jacobs G. H., Neitz J., Crognale M. Color vision polymorphism and its photopigment basis in a callitrichid monkey (Saguinus fuscicollis). Vision Res. 1987;27(12):2089–2100. doi: 10.1016/0042-6989(87)90123-4. [DOI] [PubMed] [Google Scholar]
- Jacobs G. H., Neitz M., Deegan J. F., Neitz J. Trichromatic colour vision in New World monkeys. Nature. 1996 Jul 11;382(6587):156–158. doi: 10.1038/382156a0. [DOI] [PubMed] [Google Scholar]
- Jacobs G. H. The distribution and nature of colour vision among the mammals. Biol Rev Camb Philos Soc. 1993 Aug;68(3):413–471. doi: 10.1111/j.1469-185x.1993.tb00738.x. [DOI] [PubMed] [Google Scholar]
- Jacobs G. H. Within-species variations in visual capacity among squirrel monkeys (Saimiri sciureus): color vision. Vision Res. 1984;24(10):1267–1277. doi: 10.1016/0042-6989(84)90181-0. [DOI] [PubMed] [Google Scholar]
- Lucas P. W., Darvell B. W., Lee P. K., Yuen T. D., Choong M. F. Colour cues for leaf food selection by long-tailed macaques (Macaca fascicularis) with a new suggestion for the evolution of trichromatic colour vision. Folia Primatol (Basel) 1998;69(3):139–152. doi: 10.1159/000021576. [DOI] [PubMed] [Google Scholar]
- Mollon J. D., Bowmaker J. K., Jacobs G. H. Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments. Proc R Soc Lond B Biol Sci. 1984 Sep 22;222(1228):373–399. doi: 10.1098/rspb.1984.0071. [DOI] [PubMed] [Google Scholar]
- Morgan M. J., Adam A., Mollon J. D. Dichromats detect colour-camouflaged objects that are not detected by trichromats. Proc Biol Sci. 1992 Jun 22;248(1323):291–295. doi: 10.1098/rspb.1992.0074. [DOI] [PubMed] [Google Scholar]
- Nagle M. G., Osorio D. The tuning of human photopigments may minimize red-green chromatic signals in natural conditions. Proc Biol Sci. 1993 Jun 22;252(1335):209–213. doi: 10.1098/rspb.1993.0067. [DOI] [PubMed] [Google Scholar]
- Osorio D., Vorobyev M. Colour vision as an adaptation to frugivory in primates. Proc Biol Sci. 1996 May 22;263(1370):593–599. doi: 10.1098/rspb.1996.0089. [DOI] [PubMed] [Google Scholar]
- Regan B. C., Julliot C., Simmen B., Viénot F., Charles-Dominique P., Mollon J. D. Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey. Vision Res. 1998 Nov;38(21):3321–3327. doi: 10.1016/s0042-6989(97)00462-8. [DOI] [PubMed] [Google Scholar]
- Shyue S. K., Boissinot S., Schneider H., Sampaio I., Schneider M. P., Abee C. R., Williams L., Hewett-Emmett D., Sperling H. G., Cowing J. A. Molecular genetics of spectral tuning in New World monkey color vision. J Mol Evol. 1998 Jun;46(6):697–702. doi: 10.1007/pl00006350. [DOI] [PubMed] [Google Scholar]
- Shyue S. K., Hewett-Emmett D., Sperling H. G., Hunt D. M., Bowmaker J. K., Mollon J. D., Li W. H. Adaptive evolution of color vision genes in higher primates. Science. 1995 Sep 1;269(5228):1265–1267. doi: 10.1126/science.7652574. [DOI] [PubMed] [Google Scholar]
- Tovée M. J., Bowmaker J. K., Mollon J. D. The relationship between cone pigments and behavioural sensitivity in a New World monkey (Callithrix jacchus jacchus). Vision Res. 1992 May;32(5):867–878. doi: 10.1016/0042-6989(92)90029-i. [DOI] [PubMed] [Google Scholar]