Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2000 May 7;267(1446):875–882. doi: 10.1098/rspb.2000.1084

A comparative study of ejaculate traits in three endangered ungulates with different levels of inbreeding: fluctuating asymmetry as an indicator of reproductive and genetic stress.

M Gomendio 1, J Cassinello 1, E R Roldan 1
PMCID: PMC1690618  PMID: 10853729

Abstract

We studied three closely related species of endangered gazelles (Gazella dorcas, Gazella dama and Gazella cuvieri) with different levels of inbreeding in order to determine at which intensities inbreeding influences ejaculate traits. We also examined whether fluctuating asymmetry (FA) is a reliable indicator of genetic as well as reproductive stress. Our results show that, within each population, the individual coefficient of inbreeding is inversely related to ejaculate quality only in the species with the highest levels of inbreeding (G. cuvieri). In addition, FA is a reliable indicator of individual levels of inbreeding in both the species with the highest levels of inbreeding (G. cuvieri) and the species with intermediate levels of inbreeding (G. dama). Thus, FA appears in individuals whose levels of inbreeding are still not high enough to affect male reproductive potential and should therefore be considered a sensitive indicator of genetic stress. Finally, FA is also a reliable indicator of male reproductive stress since it is related to individual semen quality in all the species studied.

Full Text

The Full Text of this article is available as a PDF (236.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Caro T. M., Laurenson M. K. Ecological and genetic factors in conservation: a cautionary tale. Science. 1994 Jan 28;263(5146):485–486. doi: 10.1126/science.8290956. [DOI] [PubMed] [Google Scholar]
  2. Cassinello J., Abaigar T., Gomendio M., Roldan E. R. Characteristics of the semen of three endangered species of gazelles (Gazella dama mhorr, G. dorcas neglecta and G. cuvieri). J Reprod Fertil. 1998 May;113(1):35–45. doi: 10.1530/jrf.0.1130035. [DOI] [PubMed] [Google Scholar]
  3. Coltman D. W., Bowen W. D., Wright J. M. Birth weight and neonatal survival of harbour seal pups are positively correlated with genetic variation measured by microsatellites. Proc Biol Sci. 1998 May 7;265(1398):803–809. doi: 10.1098/rspb.1998.0363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coulson T. N., Pemberton J. M., Albon S. D., Beaumont M., Marshall T. C., Slate J., Guinness F. E., Clutton-Brock T. H. Microsatellites reveal heterosis in red deer. Proc Biol Sci. 1998 Mar 22;265(1395):489–495. doi: 10.1098/rspb.1998.0321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crow J. F. The high spontaneous mutation rate: is it a health risk? Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8380–8386. doi: 10.1073/pnas.94.16.8380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Donnelly E. T., Lewis S. E., McNally J. A., Thompson W. In vitro fertilization and pregnancy rates: the influence of sperm motility and morphology on IVF outcome. Fertil Steril. 1998 Aug;70(2):305–314. doi: 10.1016/s0015-0282(98)00146-0. [DOI] [PubMed] [Google Scholar]
  7. Eggert-Kruse W., Schwarz H., Rohr G., Demirakca T., Tilgen W., Runnebaum B. Sperm morphology assessment using strict criteria and male fertility under in-vivo conditions of conception. Hum Reprod. 1996 Jan;11(1):139–146. doi: 10.1093/oxfordjournals.humrep.a019007. [DOI] [PubMed] [Google Scholar]
  8. Frankham R. Conservation genetics. Annu Rev Genet. 1995;29:305–327. doi: 10.1146/annurev.ge.29.120195.001513. [DOI] [PubMed] [Google Scholar]
  9. Gomendio M., Roldan E. R. Coevolution between male ejaculates and female reproductive biology in eutherian mammals. Proc Biol Sci. 1993 Apr 22;252(1333):7–12. doi: 10.1098/rspb.1993.0039. [DOI] [PubMed] [Google Scholar]
  10. Harcourt S. Endangered species. Nature. 1991 Nov 7;354(6348):10–10. doi: 10.1038/354010a0. [DOI] [PubMed] [Google Scholar]
  11. Jiménez J. A., Hughes K. A., Alaks G., Graham L., Lacy R. C. An experimental study of inbreeding depression in a natural habitat. Science. 1994 Oct 14;266(5183):271–273. doi: 10.1126/science.7939661. [DOI] [PubMed] [Google Scholar]
  12. Keller L. F., Arcese P., Smith J. N., Hochachka W. M., Stearns S. C. Selection against inbred song sparrows during a natural population bottleneck. Nature. 1994 Nov 24;372(6504):356–357. doi: 10.1038/372356a0. [DOI] [PubMed] [Google Scholar]
  13. Lande R. Genetics and demography in biological conservation. Science. 1988 Sep 16;241(4872):1455–1460. doi: 10.1126/science.3420403. [DOI] [PubMed] [Google Scholar]
  14. Margulis SW, Altmann J. Behavioural risk factors in the reproduction of inbred and outbred oldfield mice. Anim Behav. 1997 Aug;54(2):397–408. doi: 10.1006/anbe.1996.0422. [DOI] [PubMed] [Google Scholar]
  15. Menotti-Raymond M., O'Brien S. J. Dating the genetic bottleneck of the African cheetah. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3172–3176. doi: 10.1073/pnas.90.8.3172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. O'Brien S. J., Roelke M. E., Marker L., Newman A., Winkler C. A., Meltzer D., Colly L., Evermann J. F., Bush M., Wildt D. E. Genetic basis for species vulnerability in the cheetah. Science. 1985 Mar 22;227(4693):1428–1434. doi: 10.1126/science.2983425. [DOI] [PubMed] [Google Scholar]
  17. O'Brien S. J., Wildt D. E., Bush M., Caro T. M., FitzGibbon C., Aggundey I., Leakey R. E. East African cheetahs: evidence for two population bottlenecks? Proc Natl Acad Sci U S A. 1987 Jan;84(2):508–511. doi: 10.1073/pnas.84.2.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. O'brien S. J., Wildt D. E., Goldman D., Merril C. R., Bush M. The cheetah is depauperate in genetic variation. Science. 1983 Jul 29;221(4609):459–462. doi: 10.1126/science.221.4609.459. [DOI] [PubMed] [Google Scholar]
  19. doi: 10.1098/rspb.1997.0099. [DOI] [PMC free article] [Google Scholar]
  20. doi: 10.1098/rspb.1999.0778. [DOI] [PMC free article] [Google Scholar]
  21. Parsons P. A. Fluctuating asymmetry: a biological monitor of environmental and genomic stress. Heredity (Edinb) 1992 Apr;68(Pt 4):361–364. doi: 10.1038/hdy.1992.51. [DOI] [PubMed] [Google Scholar]
  22. Parsons P. A. Fluctuating asymmetry: an epigenetic measure of stress. Biol Rev Camb Philos Soc. 1990 May;65(2):131–145. doi: 10.1111/j.1469-185x.1990.tb01186.x. [DOI] [PubMed] [Google Scholar]
  23. Quattro J. M., Vrijenhoek R. C. Fitness differences among remnant populations of the endangered sonoran topminnow. Science. 1989 Sep 1;245(4921):976–978. doi: 10.1126/science.2772650. [DOI] [PubMed] [Google Scholar]
  24. Ralls K., Brugger K., Ballou J. Inbreeding and juvenile mortality in small populations of ungulates. Science. 1979 Nov 30;206(4422):1101–1103. doi: 10.1126/science.493997. [DOI] [PubMed] [Google Scholar]
  25. Roldan E. R., Cassinello J., Abaigar T., Gomendio M. Inbreeding, fluctuating asymmetry, and ejaculate quality in an endangered ungulate. Proc Biol Sci. 1998 Feb 7;265(1392):243–248. doi: 10.1098/rspb.1998.0288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Short R. V. The testis: the witness of the mating system, the site of mutation and the engine of desire. Acta Paediatr Suppl. 1997 Jul;422:3–7. doi: 10.1111/j.1651-2227.1997.tb18336.x. [DOI] [PubMed] [Google Scholar]
  27. Stockley P., Searle J. B., MacDonald D. W., Jones C. S. Female multiple mating behaviour in the common shrew as a strategy to reduce inbreeding. Proc Biol Sci. 1993 Dec 22;254(1341):173–179. doi: 10.1098/rspb.1993.0143. [DOI] [PubMed] [Google Scholar]
  28. Swaddle J. P. Visual signalling by asymmetry: a review of perceptual processes. Philos Trans R Soc Lond B Biol Sci. 1999 Aug 29;354(1388):1383–1393. doi: 10.1098/rstb.1999.0486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Söderquist L., Janson L., Larsson K., Einarsson S. Sperm morphology and fertility in A.I. bulls. Zentralbl Veterinarmed A. 1991 Aug;38(7):534–543. doi: 10.1111/j.1439-0442.1991.tb01045.x. [DOI] [PubMed] [Google Scholar]
  30. Wildt D. E., Bush M., Howard J. G., O'Brien S. J., Meltzer D., Van Dyk A., Ebedes H., Brand D. J. Unique seminal quality in the South African cheetah and a comparative evaluation in the domestic cat. Biol Reprod. 1983 Nov;29(4):1019–1025. doi: 10.1095/biolreprod29.4.1019. [DOI] [PubMed] [Google Scholar]
  31. Wildt D. E., O'Brien S. J., Howard J. G., Caro T. M., Roelke M. E., Brown J. L., Bush M. Similarity in ejaculate-endocrine characteristics in captive versus free-ranging cheetahs of two subspecies. Biol Reprod. 1987 Mar;36(2):351–360. doi: 10.1095/biolreprod36.2.351. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES