Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2000 May 7;267(1446):845–850. doi: 10.1098/rspb.2000.1080

How does the brain sustain a visual percept?

C M Portas 1, B A Strange 1, K J Friston 1, R J Dolan 1, C D Frith 1
PMCID: PMC1690623  PMID: 10853725

Abstract

Perception involves the processing of sensory stimuli and their translation into conscious experience. A novel percept can, once synthesized, be maintained or discarded from awareness. We used event-related functional magnetic resonance imaging to separate the neural responses associated with the maintenance of a percept, produced by single-image, random-dot stereograms, from the response evoked at the onset of the percept. The latter was associated with distributed bilateral activation in the posterior thalamus and regions in the occipito-temporal, parietal and frontal cortices. In contrast, sustained perception was associated with activation of the pre-frontal cortex and hippocampus. This observation suggests that sustaining a visual percept involves neuroanatomical systems which are implicated in memory function and which are distinct from those engaged during perceptual synthesis.

Full Text

The Full Text of this article is available as a PDF (549.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Büchel C., Friston K. J. Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cereb Cortex. 1997 Dec;7(8):768–778. doi: 10.1093/cercor/7.8.768. [DOI] [PubMed] [Google Scholar]
  2. Büchel C., Josephs O., Rees G., Turner R., Frith C. D., Friston K. J. The functional anatomy of attention to visual motion. A functional MRI study. Brain. 1998 Jul;121(Pt 7):1281–1294. doi: 10.1093/brain/121.7.1281. [DOI] [PubMed] [Google Scholar]
  3. Coull J. T., Nobre A. C. Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci. 1998 Sep 15;18(18):7426–7435. doi: 10.1523/JNEUROSCI.18-18-07426.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Courtney S. M., Petit L., Haxby J. V., Ungerleider L. G. The role of prefrontal cortex in working memory: examining the contents of consciousness. Philos Trans R Soc Lond B Biol Sci. 1998 Nov 29;353(1377):1819–1828. doi: 10.1098/rstb.1998.0334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eichenbaum H. Conscious awareness, memory and the hippocampus. Nat Neurosci. 1999 Sep;2(9):775–776. doi: 10.1038/12137. [DOI] [PubMed] [Google Scholar]
  6. Eichenbaum H. Declarative memory: insights from cognitive neurobiology. Annu Rev Psychol. 1997;48:547–572. doi: 10.1146/annurev.psych.48.1.547. [DOI] [PubMed] [Google Scholar]
  7. Frith C. D., Friston K., Liddle P. F., Frackowiak R. S. Willed action and the prefrontal cortex in man: a study with PET. Proc Biol Sci. 1991 Jun 22;244(1311):241–246. doi: 10.1098/rspb.1991.0077. [DOI] [PubMed] [Google Scholar]
  8. Goldman-Rakic P. S. Topography of cognition: parallel distributed networks in primate association cortex. Annu Rev Neurosci. 1988;11:137–156. doi: 10.1146/annurev.ne.11.030188.001033. [DOI] [PubMed] [Google Scholar]
  9. Henson R. N., Rugg M. D., Shallice T., Josephs O., Dolan R. J. Recollection and familiarity in recognition memory: an event-related functional magnetic resonance imaging study. J Neurosci. 1999 May 15;19(10):3962–3972. doi: 10.1523/JNEUROSCI.19-10-03962.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kleinschmidt A., Büchel C., Zeki S., Frackowiak R. S. Human brain activity during spontaneously reversing perception of ambiguous figures. Proc Biol Sci. 1998 Dec 22;265(1413):2427–2433. doi: 10.1098/rspb.1998.0594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Knowlton B. J., Fanselow M. S. The hippocampus, consolidation and on-line memory. Curr Opin Neurobiol. 1998 Apr;8(2):293–296. doi: 10.1016/s0959-4388(98)80154-2. [DOI] [PubMed] [Google Scholar]
  12. LaBerge D., Buchsbaum M. S. Positron emission tomographic measurements of pulvinar activity during an attention task. J Neurosci. 1990 Feb;10(2):613–619. doi: 10.1523/JNEUROSCI.10-02-00613.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lumer E. D., Friston K. J., Rees G. Neural correlates of perceptual rivalry in the human brain. Science. 1998 Jun 19;280(5371):1930–1934. doi: 10.1126/science.280.5371.1930. [DOI] [PubMed] [Google Scholar]
  14. Milner B. Disorders of learning and memory after temporal lobe lesions in man. Clin Neurosurg. 1972;19:421–446. doi: 10.1093/neurosurgery/19.cn_suppl_1.421. [DOI] [PubMed] [Google Scholar]
  15. Murray EA, Bussey TJ. Perceptual-mnemonic functions of the perirhinal cortex. Trends Cogn Sci. 1999 Apr;3(4):142–151. doi: 10.1016/s1364-6613(99)01303-0. [DOI] [PubMed] [Google Scholar]
  16. Petersen S. E., Robinson D. L., Keys W. Pulvinar nuclei of the behaving rhesus monkey: visual responses and their modulation. J Neurophysiol. 1985 Oct;54(4):867–886. doi: 10.1152/jn.1985.54.4.867. [DOI] [PubMed] [Google Scholar]
  17. Petersen S. E., Robinson D. L., Morris J. D. Contributions of the pulvinar to visual spatial attention. Neuropsychologia. 1987;25(1A):97–105. doi: 10.1016/0028-3932(87)90046-7. [DOI] [PubMed] [Google Scholar]
  18. Petit L., Haxby J. V. Functional anatomy of pursuit eye movements in humans as revealed by fMRI. J Neurophysiol. 1999 Jul;82(1):463–471. doi: 10.1152/jn.1999.82.1.463. [DOI] [PubMed] [Google Scholar]
  19. Petrides M., Alivisatos B., Evans A. C. Functional activation of the human ventrolateral frontal cortex during mnemonic retrieval of verbal information. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5803–5807. doi: 10.1073/pnas.92.13.5803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Petrides M., Alivisatos B., Evans A. C., Meyer E. Dissociation of human mid-dorsolateral from posterior dorsolateral frontal cortex in memory processing. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):873–877. doi: 10.1073/pnas.90.3.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Petrides M., Alivisatos B., Meyer E., Evans A. C. Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):878–882. doi: 10.1073/pnas.90.3.878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Portas C. M., Rees G., Howseman A. M., Josephs O., Turner R., Frith C. D. A specific role for the thalamus in mediating the interaction of attention and arousal in humans. J Neurosci. 1998 Nov 1;18(21):8979–8989. doi: 10.1523/JNEUROSCI.18-21-08979.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rao R. P., Ballard D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci. 1999 Jan;2(1):79–87. doi: 10.1038/4580. [DOI] [PubMed] [Google Scholar]
  24. Squire L. R. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev. 1992 Apr;99(2):195–231. doi: 10.1037/0033-295x.99.2.195. [DOI] [PubMed] [Google Scholar]
  25. Tanaka K. Inferotemporal cortex and object vision. Annu Rev Neurosci. 1996;19:109–139. doi: 10.1146/annurev.ne.19.030196.000545. [DOI] [PubMed] [Google Scholar]
  26. Treisman A. M., Kanwisher N. G. Perceiving visually presented objects: recognition, awareness, and modularity. Curr Opin Neurobiol. 1998 Apr;8(2):218–226. doi: 10.1016/s0959-4388(98)80143-8. [DOI] [PubMed] [Google Scholar]
  27. Zeki S., Bartels A. Toward a theory of visual consciousness. Conscious Cogn. 1999 Jun;8(2):225–259. doi: 10.1006/ccog.1999.0390. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES