Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2000 Jun 7;267(1448):1097–1105. doi: 10.1098/rspb.2000.1114

The role of male accessory gland protein Acp36DE in sperm competition in Drosophila melanogaster.

T Chapman 1, D M Neubaum 1, M F Wolfner 1, L Partridge 1
PMCID: PMC1690647  PMID: 10885514

Abstract

A crucial factor determining sperm fertilization success in multiply mated Drosophila melanogaster females is the efficiency with which sperm are stored. This process is modulated by the accessory gland protein Acp36DE. In this study, we show that the effect of Acp36DE on sperm storage itself alters the outcome of sperm competition. As second-mating males, Acp36DE1 (null) males had significantly lower P2-values than Acp36DE2 (truncation) or Acp36DE+ (control) males, as might be expected as the null males' sperm are poorly stored. We used spermless males, which are null for Acp36DE, to show that, in the absence of sperm co-transfer, Acp36DE itself could not displace first-male sperm. The results therefore suggest that males null for Acp36DE suffer in sperm displacement because fewer sperm are stored or retained, not because Acp36DE itself displaces sperm. Acp36DE1 (null) males also gained significantly fewer fertilizations than controls when they were the first males to mate. Using spermless males, we also showed that significantly more second-male offspring were produced following the transfer of Acp36DE by spermless first-mating males. This implies that the transfer of Acp36DE itself by the first male facilitated the storage or use of the second male's sperm and that co-transfer with sperm is not necessary for Acp36DE effects on second-male sperm storage. Acp36DE may persist in the reproductive tract and aid the storage of any sperm including those of later-mating males or prime the female for future efficient sperm storage. Our results indicate that mutations in genes that affect sperm storage can drastically affect the outcome of sperm competition.

Full Text

The Full Text of this article is available as a PDF (296.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bertram M. J., Neubaum D. M., Wolfner M. F. Localization of the Drosophila male accessory gland protein Acp36DE in the mated female suggests a role in sperm storage. Insect Biochem Mol Biol. 1996 Sep-Oct;26(8-9):971–980. doi: 10.1016/s0965-1748(96)00064-1. [DOI] [PubMed] [Google Scholar]
  2. Chen P. S., Stumm-Zollinger E., Aigaki T., Balmer J., Bienz M., Böhlen P. A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell. 1988 Jul 29;54(3):291–298. doi: 10.1016/0092-8674(88)90192-4. [DOI] [PubMed] [Google Scholar]
  3. Civetta A. Direct visualization of sperm competition and sperm storage in Drosophila. 1999 Jul 29-Aug 12Curr Biol. 9(15):841–844. doi: 10.1016/s0960-9822(99)80370-4. [DOI] [PubMed] [Google Scholar]
  4. Clark A. G., Aguadé M., Prout T., Harshman L. G., Langley C. H. Variation in sperm displacement and its association with accessory gland protein loci in Drosophila melanogaster. Genetics. 1995 Jan;139(1):189–201. doi: 10.1093/genetics/139.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark A. G., Begun D. J. Female genotypes affect sperm displacement in Drosophila. Genetics. 1998 Jul;149(3):1487–1493. doi: 10.1093/genetics/149.3.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clark A. G., Begun D. J., Prout T. Female x male interactions in Drosophila sperm competition. Science. 1999 Jan 8;283(5399):217–220. doi: 10.1126/science.283.5399.217. [DOI] [PubMed] [Google Scholar]
  7. DiBenedetto A. J., Harada H. A., Wolfner M. F. Structure, cell-specific expression, and mating-induced regulation of a Drosophila melanogaster male accessory gland gene. Dev Biol. 1990 May;139(1):134–148. doi: 10.1016/0012-1606(90)90284-p. [DOI] [PubMed] [Google Scholar]
  8. Gilchrist A. S., Partridge L. Heritability of pre-adult viability differences can explain apparent heritability of sperm displacement ability in Drosophila melanogaster. Proc Biol Sci. 1997 Sep 22;264(1386):1271–1275. doi: 10.1098/rspb.1997.0175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gilchrist A. S., Partridge L. Why it is difficult to model sperm displacement in Drosophila melanogaster: the relation between sperm transfer and copulation duration. Evolution. 2000 Apr;54(2):534–542. doi: 10.1111/j.0014-3820.2000.tb00056.x. [DOI] [PubMed] [Google Scholar]
  10. Hardy R. W., Tokuyasu K. T., Lindsley D. L. Analysis of spermatogenesis in Drosophila melanogaster bearing deletions for Y-chromosome fertility genes. Chromosoma. 1981;83(5):593–617. doi: 10.1007/BF00328522. [DOI] [PubMed] [Google Scholar]
  11. Heifetz Y., Lung O., Frongillo E. A., Jr, Wolfner M. F. The Drosophila seminal fluid protein Acp26Aa stimulates release of oocytes by the ovary. Curr Biol. 2000 Jan 27;10(2):99–102. doi: 10.1016/s0960-9822(00)00288-8. [DOI] [PubMed] [Google Scholar]
  12. Herndon L. A., Wolfner M. F. A Drosophila seminal fluid protein, Acp26Aa, stimulates egg laying in females for 1 day after mating. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10114–10118. doi: 10.1073/pnas.92.22.10114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hughes K. A. Quantitative genetics of sperm precedence in Drosophila melanogaster. Genetics. 1997 Jan;145(1):139–151. doi: 10.1093/genetics/145.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Imhof M., Harr B., Brem G., Schlötterer C. Multiple mating in wild Drosophila melanogaster revisited by microsatellite analysis. Mol Ecol. 1998 Jul;7(7):915–917. doi: 10.1046/j.1365-294x.1998.00382.x. [DOI] [PubMed] [Google Scholar]
  15. Kalb J. M., DiBenedetto A. J., Wolfner M. F. Probing the function of Drosophila melanogaster accessory glands by directed cell ablation. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8093–8097. doi: 10.1073/pnas.90.17.8093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kiefer B. I. Ultrastructural Abnormalities in Developing Sperm of X/0 DROSOPHILA MELANOGASTER. Genetics. 1966 Dec;54(6):1441–1452. doi: 10.1093/genetics/54.6.1441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lung O., Wolfner M. F. Drosophila seminal fluid proteins enter the circulatory system of the mated female fly by crossing the posterior vaginal wall. Insect Biochem Mol Biol. 1999 Dec;29(12):1043–1052. doi: 10.1016/s0965-1748(99)00078-8. [DOI] [PubMed] [Google Scholar]
  18. Milkmann R., Zeitler R. R. Concurrent multiple paternity in natural and laboratory populations of Drosophila melanogaster. Genetics. 1974 Dec;78(4):1191–1193. doi: 10.1093/genetics/78.4.1191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Neubaum D. M., Wolfner M. F. Mated Drosophila melanogaster females require a seminal fluid protein, Acp36DE, to store sperm efficiently. Genetics. 1999 Oct;153(2):845–857. doi: 10.1093/genetics/153.2.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ochando M. D., Reyes A., Ayala F. J. Multiple paternity in two natural populations (orchard and vineyard) of Drosophila. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11769–11773. doi: 10.1073/pnas.93.21.11769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. doi: 10.1098/rspb.1998.0498. [DOI] [PMC free article] [Google Scholar]
  22. Price C. S. Conspecific sperm precedence in Drosophila. Nature. 1997 Aug 14;388(6643):663–666. doi: 10.1038/41753. [DOI] [PubMed] [Google Scholar]
  23. Price C. S., Dyer K. A., Coyne J. A. Sperm competition between Drosophila males involves both displacement and incapacitation. Nature. 1999 Jul 29;400(6743):449–452. doi: 10.1038/22755. [DOI] [PubMed] [Google Scholar]
  24. Prout T., Clark A. G. Polymorphism in genes that influence sperm displacement. Genetics. 1996 Sep;144(1):401–408. doi: 10.1093/genetics/144.1.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Prout T., Clark A. G. Seminal fluid causes temporarily reduced egg hatch in previously mated females. Proc Biol Sci. 2000 Jan 22;267(1439):201–203. doi: 10.1098/rspb.2000.0988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Service P. M., Fales A. J. Evolution of delayed reproductive senescence in male fruit flies: sperm competition. Genetica. 1993;91(1-3):111–125. doi: 10.1007/BF01435992. [DOI] [PubMed] [Google Scholar]
  27. Tram U., Wolfner M. F. Male seminal fluid proteins are essential for sperm storage in Drosophila melanogaster. Genetics. 1999 Oct;153(2):837–844. doi: 10.1093/genetics/153.2.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wolfner M. F., Partridge L., Lewin S., Kalb J. M., Chapman T., Herndon L. A. Mating and hormonal triggers regulate accessory gland gene expression in male Drosophila. J Insect Physiol. 1997 Nov;43(12):1117–1123. doi: 10.1016/s0022-1910(97)00062-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES