Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2000 Jun 22;267(1449):1229–1238. doi: 10.1098/rspb.2000.1132

Ultrastructure of the post-corpus of Zeldia punctata (Cephalobina) for analysis of the evolutionary framework of nematodes related to Caenorhabditis elegans (Rhabditina).

Y C Zhang 1, J G Baldwin 1
PMCID: PMC1690665  PMID: 10902689

Abstract

The ultrastructure of the post-corpus of Zeldia punctata (Cephalobina) was compared with previous observations of Caenorhabditis elegans (Rhabditina) and Diplenteron sp. (Diplogastrina) with the goal of interpreting the morphological evolution of the feeding structures in the Secernentea. The post-corpus of Z. punctata consists of six marginal, 13 muscle, five gland and seven nerve cells. The most anterior of four layers of muscle cells consists of six mononucleate cells in Z. punctata. The homologous layer in C. elegans and Diplenteron consists of three binucleate cells, suggesting a unique derived character (synapomorphy) shared between the Rhabditina and Diplogastrina. Contrary to Diplenteron sp. where we observed three oesophageal glands, Z. punctata and C. elegans have five oesophageal glands. We question this shared character as reflecting a common evolution between the Cephalobina and Rhabditina, because there are strong arguments for functional (adaptive) convergence of the five glands in these bacterial feeders. Convergence is further suggested by the mosaic distribution of three versus five glands throughout the Nemata; this distribution creates difficulties in establishing character polarity. Although morphological data are often laborious to recover and interpret, we nevertheless view 'reciprocal illumination' between molecular and morphological characters as the most promising and robust process for reconstructing the evolution of the Secernentea and its feeding structures.

Full Text

The Full Text of this article is available as a PDF (851.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertson D. G., Thomson J. N. The pharynx of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci. 1976 Aug 10;275(938):299–325. doi: 10.1098/rstb.1976.0085. [DOI] [PubMed] [Google Scholar]
  2. Baldwin J. G., Frisse L. M., Vida J. T., Eddleman C. D., Thomas W. K. An evolutionary framework for the study of developmental evolution in a set of nematodes related to Caenorhabditis elegans. Mol Phylogenet Evol. 1997 Oct;8(2):249–259. doi: 10.1006/mpev.1997.0433. [DOI] [PubMed] [Google Scholar]
  3. Blaxter M. L., De Ley P., Garey J. R., Liu L. X., Scheldeman P., Vierstraete A., Vanfleteren J. R., Mackey L. Y., Dorris M., Frisse L. M. A molecular evolutionary framework for the phylum Nematoda. Nature. 1998 Mar 5;392(6671):71–75. doi: 10.1038/32160. [DOI] [PubMed] [Google Scholar]
  4. Dolinski C., Borgonie G., Schnabel R., Baldwin J. G. Buccal capsule development as a consideration for phylogenetic analysis of Rhabditida (Nemata). Dev Genes Evol. 1998 Nov;208(9):495–503. doi: 10.1007/s004270050208. [DOI] [PubMed] [Google Scholar]
  5. Dorris M., De Ley P., Blaxter M. L. Molecular analysis of nematode diversity and the evolution of parasitism. Parasitol Today. 1999 May;15(5):188–193. doi: 10.1016/s0169-4758(99)01439-8. [DOI] [PubMed] [Google Scholar]
  6. Fitch D. H. Evolution of male tail development in rhabditid nematodes related to Caenorhabditis elegans. Syst Biol. 1997 Mar;46(1):145–179. doi: 10.1093/sysbio/46.1.145. [DOI] [PubMed] [Google Scholar]
  7. McCracken K. G., Harshman J., McClellan D. A., Afton A. D. Data set incongruence and correlated character evolution: an example of functional convergence in the hind-limbs of stifftail diving ducks. Syst Biol. 1999 Dec;48(4):683–714. doi: 10.1080/106351599259979. [DOI] [PubMed] [Google Scholar]
  8. Nadler S. A., Hudspeth D. S. Ribosomal DNA and phylogeny of the Ascaridoidea (Nemata: Secernentea): implications for morphological evolution and classification. Mol Phylogenet Evol. 1998 Oct;10(2):221–236. doi: 10.1006/mpev.1998.0514. [DOI] [PubMed] [Google Scholar]
  9. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  11. Sulston J. E., Schierenberg E., White J. G., Thomson J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983 Nov;100(1):64–119. doi: 10.1016/0012-1606(83)90201-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES