Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2000 Jul 7;267(1450):1363–1367. doi: 10.1098/rspb.2000.1151

What is the function of receptor and membrane endocytosis at the postsynaptic neuron?

J Smythies 1
PMCID: PMC1690678  PMID: 10972133

Abstract

This paper explores the implications of certain new developments in cell biology upon neuroscience. Until recently it was thought that neurotransmitters and neuromodulators had only one function, which was to stimulate their specific receptors at the cell surface. From here on, all activity was supposed to be effected by postsynaptic cascades. The discovery that membrane components, particularly G-protein-linked receptors, are not static but are subject to a massive and complex process of continual endocytosis, processing in the endosome system and recycling back to the external membrane, raises the question of its functional significance. In addition, it has been found that many neuromodulators such as polypeptides have their main locus of action inside the postsynaptic neuron. This review covers the role of the endocytic mechanism on receptor desensitization and resensitization, synaptic reorganization and plasticity synaptic scaling and the possible repair of oxidative damage. The possible involvement of this system in Alzheimer's disease is discussed.

Full Text

The Full Text of this article is available as a PDF (171.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernard V., Laribi O., Levey A. I., Bloch B. Subcellular redistribution of m2 muscarinic acetylcholine receptors in striatal interneurons in vivo after acute cholinergic stimulation. J Neurosci. 1998 Dec 1;18(23):10207–10218. doi: 10.1523/JNEUROSCI.18-23-10207.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bottomley M. J., Lo Surdo P., Driscoll P. C. Endocytosis: How dynamin sets vesicles PHree! Curr Biol. 1999 Apr 22;9(8):R301–R304. doi: 10.1016/s0960-9822(99)80184-5. [DOI] [PubMed] [Google Scholar]
  3. Bretscher M. S., Aguado-Velasco C. EGF induces recycling membrane to form ruffles. Curr Biol. 1998 Jun 4;8(12):721–724. doi: 10.1016/s0960-9822(98)70281-7. [DOI] [PubMed] [Google Scholar]
  4. Bretscher M. S., Aguado-Velasco C. Membrane traffic during cell locomotion. Curr Opin Cell Biol. 1998 Aug;10(4):537–541. doi: 10.1016/s0955-0674(98)80070-7. [DOI] [PubMed] [Google Scholar]
  5. Cao T. T., Mays R. W., von Zastrow M. Regulated endocytosis of G-protein-coupled receptors by a biochemically and functionally distinct subpopulation of clathrin-coated pits. J Biol Chem. 1998 Sep 18;273(38):24592–24602. doi: 10.1074/jbc.273.38.24592. [DOI] [PubMed] [Google Scholar]
  6. Carman C. V., Benovic J. L. G-protein-coupled receptors: turn-ons and turn-offs. Curr Opin Neurobiol. 1998 Jun;8(3):335–344. doi: 10.1016/s0959-4388(98)80058-5. [DOI] [PubMed] [Google Scholar]
  7. Carroll R. C., Beattie E. C., Xia H., Lüscher C., Altschuler Y., Nicoll R. A., Malenka R. C., von Zastrow M. Dynamin-dependent endocytosis of ionotropic glutamate receptors. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14112–14117. doi: 10.1073/pnas.96.24.14112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cataldo A. M., Barnett J. L., Pieroni C., Nixon R. A. Increased neuronal endocytosis and protease delivery to early endosomes in sporadic Alzheimer's disease: neuropathologic evidence for a mechanism of increased beta-amyloidogenesis. J Neurosci. 1997 Aug 15;17(16):6142–6151. doi: 10.1523/JNEUROSCI.17-16-06142.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cataldo A. M., Hamilton D. J., Barnett J. L., Paskevich P. A., Nixon R. A. Properties of the endosomal-lysosomal system in the human central nervous system: disturbances mark most neurons in populations at risk to degenerate in Alzheimer's disease. J Neurosci. 1996 Jan;16(1):186–199. doi: 10.1523/JNEUROSCI.16-01-00186.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chibalin A. V., Zierath J. R., Katz A. I., Berggren P. O., Bertorello A. M. Phosphatidylinositol 3-kinase-mediated endocytosis of renal Na+, K+-ATPase alpha subunit in response to dopamine. Mol Biol Cell. 1998 May;9(5):1209–1220. doi: 10.1091/mbc.9.5.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clague M. J. Molecular aspects of the endocytic pathway. Biochem J. 1998 Dec 1;336(Pt 2):271–282. doi: 10.1042/bj3360271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Di Guglielmo G. M., Drake P. G., Baass P. C., Authier F., Posner B. I., Bergeron J. J. Insulin receptor internalization and signalling. Mol Cell Biochem. 1998 May;182(1-2):59–63. [PubMed] [Google Scholar]
  13. Doherty A. J., Coutinho V., Collingridge G. L., Henley J. M. Rapid internalization and surface expression of a functional, fluorescently tagged G-protein-coupled glutamate receptor. Biochem J. 1999 Jul 15;341(Pt 2):415–422. [PMC free article] [PubMed] [Google Scholar]
  14. Dumartin B., Caillé I., Gonon F., Bloch B. Internalization of D1 dopamine receptor in striatal neurons in vivo as evidence of activation by dopamine agonists. J Neurosci. 1998 Mar 1;18(5):1650–1661. doi: 10.1523/JNEUROSCI.18-05-01650.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Engert F., Bonhoeffer T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature. 1999 May 6;399(6731):66–70. doi: 10.1038/19978. [DOI] [PubMed] [Google Scholar]
  16. Ferguson S. S., Caron M. G. G protein-coupled receptor adaptation mechanisms. Semin Cell Dev Biol. 1998 Apr;9(2):119–127. doi: 10.1006/scdb.1997.0216. [DOI] [PubMed] [Google Scholar]
  17. Figueiredo-Pereira M. E., Cohen G. The ubiquitin/proteasome pathway: friend or foe in zinc-, cadmium-, and H2O2-induced neuronal oxidative stress. Mol Biol Rep. 1999 Apr;26(1-2):65–69. doi: 10.1023/a:1006909918866. [DOI] [PubMed] [Google Scholar]
  18. Folli F., Alvaro D., Gigliozzi A., Bassotti C., Kahn C. R., Pontiroli A. E., Capocaccia L., Jezequel A. M., Benedetti A. Regulation of endocytic-transcytotic pathways and bile secretion by phosphatidylinositol 3-kinase in rats. Gastroenterology. 1997 Sep;113(3):954–965. doi: 10.1016/s0016-5085(97)70192-6. [DOI] [PubMed] [Google Scholar]
  19. Gibson A., Futter C. E., Maxwell S., Allchin E. H., Shipman M., Kraehenbuhl J. P., Domingo D., Odorizzi G., Trowbridge I. S., Hopkins C. R. Sorting mechanisms regulating membrane protein traffic in the apical transcytotic pathway of polarized MDCK cells. J Cell Biol. 1998 Oct 5;143(1):81–94. doi: 10.1083/jcb.143.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Grimes M. L., Zhou J., Beattie E. C., Yuen E. C., Hall D. E., Valletta J. S., Topp K. S., LaVail J. H., Bunnett N. W., Mobley W. C. Endocytosis of activated TrkA: evidence that nerve growth factor induces formation of signaling endosomes. J Neurosci. 1996 Dec 15;16(24):7950–7964. doi: 10.1523/JNEUROSCI.16-24-07950.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Grune T., Davies K. J. Breakdown of oxidized proteins as a part of secondary antioxidant defenses in mammalian cells. Biofactors. 1997;6(2):165–172. doi: 10.1002/biof.5520060210. [DOI] [PubMed] [Google Scholar]
  22. Harris K. M. Structure, development, and plasticity of dendritic spines. Curr Opin Neurobiol. 1999 Jun;9(3):343–348. doi: 10.1016/s0959-4388(99)80050-6. [DOI] [PubMed] [Google Scholar]
  23. Henkel M. K., Pott G., Henkel A. W., Juliano L., Kam C. M., Powers J. C., Franzusoff A. Endocytic delivery of intramolecularly quenched substrates and inhibitors to the intracellular yeast Kex2 protease1. Biochem J. 1999 Jul 15;341(Pt 2):445–452. [PMC free article] [PubMed] [Google Scholar]
  24. Hirasawa A., Awaji T., Sugawara T., Tsujimoto A., Tsujimoto G. Differential mechanism for the cell surface sorting and agonist-promoted internalization of the alpha1B-adrenoceptor. Br J Pharmacol. 1998 May;124(1):55–62. doi: 10.1038/sj.bjp.0701795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hu Y., Barzilai A., Chen M., Bailey C. H., Kandel E. R. 5-HT and cAMP induce the formation of coated pits and vesicles and increase the expression of clathrin light chain in sensory neurons of aplysia. Neuron. 1993 May;10(5):921–929. doi: 10.1016/0896-6273(93)90207-8. [DOI] [PubMed] [Google Scholar]
  26. Ignatova E. G., Belcheva M. M., Bohn L. M., Neuman M. C., Coscia C. J. Requirement of receptor internalization for opioid stimulation of mitogen-activated protein kinase: biochemical and immunofluorescence confocal microscopic evidence. J Neurosci. 1999 Jan 1;19(1):56–63. doi: 10.1523/JNEUROSCI.19-01-00056.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Jans D. A., Hassan G. Nuclear targeting by growth factors, cytokines, and their receptors: a role in signaling? Bioessays. 1998 May;20(5):400–411. doi: 10.1002/(SICI)1521-1878(199805)20:5<400::AID-BIES7>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  28. Kelly R. B. Deconstructing membrane traffic. Trends Cell Biol. 1999 Dec;9(12):M29–M33. [PubMed] [Google Scholar]
  29. Koenig J. A., Edwardson J. M. Endocytosis and recycling of G protein-coupled receptors. Trends Pharmacol Sci. 1997 Aug;18(8):276–287. doi: 10.1016/s0165-6147(97)01091-2. [DOI] [PubMed] [Google Scholar]
  30. Kornitzer D., Ciechanover A. Modes of regulation of ubiquitin-mediated protein degradation. J Cell Physiol. 2000 Jan;182(1):1–11. doi: 10.1002/(SICI)1097-4652(200001)182:1<1::AID-JCP1>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
  31. Krugmann S., Welch H. PI 3-kinase. Curr Biol. 1998 Nov 19;8(23):R828–R828. doi: 10.1016/s0960-9822(07)00522-2. [DOI] [PubMed] [Google Scholar]
  32. Kurashima K., Szabó E. Z., Lukacs G., Orlowski J., Grinstein S. Endosomal recycling of the Na+/H+ exchanger NHE3 isoform is regulated by the phosphatidylinositol 3-kinase pathway. J Biol Chem. 1998 Aug 14;273(33):20828–20836. doi: 10.1074/jbc.273.33.20828. [DOI] [PubMed] [Google Scholar]
  33. Laporte S. A., Oakley R. H., Zhang J., Holt J. A., Ferguson S. S., Caron M. G., Barak L. S. The beta2-adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3712–3717. doi: 10.1073/pnas.96.7.3712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Levkowitz G., Waterman H., Ettenberg S. A., Katz M., Tsygankov A. Y., Alroy I., Lavi S., Iwai K., Reiss Y., Ciechanover A. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell. 1999 Dec;4(6):1029–1040. doi: 10.1016/s1097-2765(00)80231-2. [DOI] [PubMed] [Google Scholar]
  35. Lewis P., Lentz T. L. Rabies virus entry into cultured rat hippocampal neurons. J Neurocytol. 1998 Aug;27(8):559–573. doi: 10.1023/a:1006912610044. [DOI] [PubMed] [Google Scholar]
  36. Lissin D. V., Carroll R. C., Nicoll R. A., Malenka R. C., von Zastrow M. Rapid, activation-induced redistribution of ionotropic glutamate receptors in cultured hippocampal neurons. J Neurosci. 1999 Feb 15;19(4):1263–1272. doi: 10.1523/JNEUROSCI.19-04-01263.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lledo P. M., Zhang X., Südhof T. C., Malenka R. C., Nicoll R. A. Postsynaptic membrane fusion and long-term potentiation. Science. 1998 Jan 16;279(5349):399–403. doi: 10.1126/science.279.5349.399. [DOI] [PubMed] [Google Scholar]
  38. Luo Y., Sunderland T., Wolozin B. Physiologic levels of beta-amyloid activate phosphatidylinositol 3-kinase with the involvement of tyrosine phosphorylation. J Neurochem. 1996 Sep;67(3):978–987. doi: 10.1046/j.1471-4159.1996.67030978.x. [DOI] [PubMed] [Google Scholar]
  39. Lüscher C., Xia H., Beattie E. C., Carroll R. C., von Zastrow M., Malenka R. C., Nicoll R. A. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron. 1999 Nov;24(3):649–658. doi: 10.1016/s0896-6273(00)81119-8. [DOI] [PubMed] [Google Scholar]
  40. Lüthi A., Chittajallu R., Duprat F., Palmer M. J., Benke T. A., Kidd F. L., Henley J. M., Isaac J. T., Collingridge G. L. Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF-GluR2 interaction. Neuron. 1999 Oct;24(2):389–399. doi: 10.1016/s0896-6273(00)80852-1. [DOI] [PubMed] [Google Scholar]
  41. McConalogue K., Grady E. F., Minnis J., Balestra B., Tonini M., Brecha N. C., Bunnett N. W., Sternini C. Activation and internalization of the mu-opioid receptor by the newly discovered endogenous agonists, endomorphin-1 and endomorphin-2. Neuroscience. 1999 Mar;90(3):1051–1059. doi: 10.1016/s0306-4522(98)00514-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Mesulam M. M. Neuroplasticity failure in Alzheimer's disease: bridging the gap between plaques and tangles. Neuron. 1999 Nov;24(3):521–529. doi: 10.1016/s0896-6273(00)81109-5. [DOI] [PubMed] [Google Scholar]
  43. Milzani A., DalleDonne I., Dalledonne I. Effects of chlorpromazine on actin polymerization: slackening of filament elongation and filament annealing. Arch Biochem Biophys. 1999 Sep 1;369(1):59–67. doi: 10.1006/abbi.1999.1260. [DOI] [PubMed] [Google Scholar]
  44. Moore R. H., Tuffaha A., Millman E. E., Dai W., Hall H. S., Dickey B. F., Knoll B. J. Agonist-induced sorting of human beta2-adrenergic receptors to lysosomes during downregulation. J Cell Sci. 1999 Feb;112(Pt 3):329–338. doi: 10.1242/jcs.112.3.329. [DOI] [PubMed] [Google Scholar]
  45. Morales M., Goda Y. Nomadic AMPA receptors and LTP. Neuron. 1999 Jul;23(3):431–434. doi: 10.1016/s0896-6273(00)80797-7. [DOI] [PubMed] [Google Scholar]
  46. Mukherjee S., Ghosh R. N., Maxfield F. R. Endocytosis. Physiol Rev. 1997 Jul;77(3):759–803. doi: 10.1152/physrev.1997.77.3.759. [DOI] [PubMed] [Google Scholar]
  47. Mundell S. J., Kelly E. The effect of inhibitors of receptor internalization on the desensitization and resensitization of three Gs-coupled receptor responses. Br J Pharmacol. 1998 Dec;125(7):1594–1600. doi: 10.1038/sj.bjp.0702234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Neve R. L., Coopersmith R., McPhie D. L., Santeufemio C., Pratt K. G., Murphy C. J., Lynn S. D. The neuronal growth-associated protein GAP-43 interacts with rabaptin-5 and participates in endocytosis. J Neurosci. 1998 Oct 1;18(19):7757–7767. doi: 10.1523/JNEUROSCI.18-19-07757.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Nishimune A., Isaac J. T., Molnar E., Noel J., Nash S. R., Tagaya M., Collingridge G. L., Nakanishi S., Henley J. M. NSF binding to GluR2 regulates synaptic transmission. Neuron. 1998 Jul;21(1):87–97. doi: 10.1016/s0896-6273(00)80517-6. [DOI] [PubMed] [Google Scholar]
  50. Noel J., Ralph G. S., Pickard L., Williams J., Molnar E., Uney J. B., Collingridge G. L., Henley J. M. Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF-dependent mechanism. Neuron. 1999 Jun;23(2):365–376. doi: 10.1016/s0896-6273(00)80786-2. [DOI] [PubMed] [Google Scholar]
  51. Parton R. G., Simons K., Dotti C. G. Axonal and dendritic endocytic pathways in cultured neurons. J Cell Biol. 1992 Oct;119(1):123–137. doi: 10.1083/jcb.119.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Petrou C., Tashjian A. H., Jr The thyrotropin-releasing hormone-receptor complex and G11alpha are both internalised into clathrin-coated vesicles. Cell Signal. 1998 Sep;10(8):553–559. doi: 10.1016/s0898-6568(97)00190-3. [DOI] [PubMed] [Google Scholar]
  53. Raucher D., Sheetz M. P. Membrane expansion increases endocytosis rate during mitosis. J Cell Biol. 1999 Feb 8;144(3):497–506. doi: 10.1083/jcb.144.3.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Rouze N. C., Schwartz E. A. Continuous and transient vesicle cycling at a ribbon synapse. J Neurosci. 1998 Nov 1;18(21):8614–8624. doi: 10.1523/JNEUROSCI.18-21-08614.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Shpetner H., Joly M., Hartley D., Corvera S. Potential sites of PI-3 kinase function in the endocytic pathway revealed by the PI-3 kinase inhibitor, wortmannin. J Cell Biol. 1996 Feb;132(4):595–605. doi: 10.1083/jcb.132.4.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Skarpen E., Johannessen L. E., Bjerk K., Fasteng H., Guren T. K., Lindeman B., Thoresen G. H., Christoffersen T., Stang E., Huitfeldt H. S. Endocytosed epidermal growth factor (EGF) receptors contribute to the EGF-mediated growth arrest in A431 cells by inducing a sustained increase in p21/CIP1. Exp Cell Res. 1998 Aug 25;243(1):161–172. doi: 10.1006/excr.1998.4127. [DOI] [PubMed] [Google Scholar]
  57. Smythies J. The biochemical basis of synaptic plasticity and neurocomputation: a new theory. Proc Biol Sci. 1997 Apr 22;264(1381):575–579. doi: 10.1098/rspb.1997.0082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Smythies J. The neurotoxicity of glutamate, dopamine, iron and reactive oxygen species: functional interrelationships in health and disease: a review-discussion. Neurotox Res. 1999 Sep;1(1):27–39. doi: 10.1007/BF03033337. [DOI] [PubMed] [Google Scholar]
  59. Sojakka K., Punnonen E. L., Marjomäki V. S. Isoproterenol inhibits fluid-phase endocytosis from early to late endosomes. Eur J Cell Biol. 1999 Mar;78(3):161–169. doi: 10.1016/S0171-9335(99)80095-8. [DOI] [PubMed] [Google Scholar]
  60. Sorensen S. D., Linseman D. A., McEwen E. L., Heacock A. M., Fisher S. K. A role for a wortmannin-sensitive phosphatidylinositol-4-kinase in the endocytosis of muscarinic cholinergic receptors. Mol Pharmacol. 1998 May;53(5):827–836. [PubMed] [Google Scholar]
  61. Spacek J., Harris K. M. Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J Neurosci. 1997 Jan 1;17(1):190–203. doi: 10.1523/JNEUROSCI.17-01-00190.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Spiro D. J., Boll W., Kirchhausen T., Wessling-Resnick M. Wortmannin alters the transferrin receptor endocytic pathway in vivo and in vitro. Mol Biol Cell. 1996 Mar;7(3):355–367. doi: 10.1091/mbc.7.3.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Subtil A., Hémar A., Dautry-Varsat A. Rapid endocytosis of interleukin 2 receptors when clathrin-coated pit endocytosis is inhibited. J Cell Sci. 1994 Dec;107(Pt 12):3461–3468. doi: 10.1242/jcs.107.12.3461. [DOI] [PubMed] [Google Scholar]
  64. Szekeres P. G., Koenig J. A., Edwardson J. M. The relationship between agonist intrinsic activity and the rate of endocytosis of muscarinic receptors in a human neuroblastoma cell line. Mol Pharmacol. 1998 Apr;53(4):759–765. doi: 10.1124/mol.53.4.759. [DOI] [PubMed] [Google Scholar]
  65. Turrigiano G. G., Nelson S. B. Thinking globally, acting locally: AMPA receptor turnover and synaptic strength. Neuron. 1998 Nov;21(5):933–935. doi: 10.1016/s0896-6273(00)80607-8. [DOI] [PubMed] [Google Scholar]
  66. Vickery R. G., von Zastrow M. Distinct dynamin-dependent and -independent mechanisms target structurally homologous dopamine receptors to different endocytic membranes. J Cell Biol. 1999 Jan 11;144(1):31–43. doi: 10.1083/jcb.144.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Vieira A. V., Lamaze C., Schmid S. L. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science. 1996 Dec 20;274(5295):2086–2089. doi: 10.1126/science.274.5295.2086. [DOI] [PubMed] [Google Scholar]
  68. Whistler J. L., Chuang H. H., Chu P., Jan L. Y., von Zastrow M. Functional dissociation of mu opioid receptor signaling and endocytosis: implications for the biology of opiate tolerance and addiction. Neuron. 1999 Aug;23(4):737–746. doi: 10.1016/s0896-6273(01)80032-5. [DOI] [PubMed] [Google Scholar]
  69. Willnow T. E. Receptor-associated protein (RAP): a specialized chaperone for endocytic receptors. Biol Chem. 1998 Aug-Sep;379(8-9):1025–1031. [PubMed] [Google Scholar]
  70. Zapf-Colby A., Olefsky J. M. Nerve growth factor processing and trafficking events following TrkA-mediated endocytosis. Endocrinology. 1998 Jul;139(7):3232–3240. doi: 10.1210/endo.139.7.6122. [DOI] [PubMed] [Google Scholar]
  71. de Wit R., Capello A., Boonstra J., Verkleij A. J., Post J. A. Hydrogen peroxide inhibits epidermal growth factor receptor internalization in human fibroblasts. Free Radic Biol Med. 2000 Jan 1;28(1):28–38. doi: 10.1016/s0891-5849(99)00199-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES