Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2000 Jul 22;267(1451):1433–1438. doi: 10.1098/rspb.2000.1160

Genetics, local environment and health as factors influencing plasma carotenoids in wild American kestrels (Falco sparverius).

G R Bortolotti 1, J L Tella 1, M G Forero 1, R D Dawson 1, J J Negro 1
PMCID: PMC1690695  PMID: 10983827

Abstract

Carotenoids are important as pigments for bright coloration of animals, and as physiologically active compounds with a wide array of health-related functions. Carotenoid-dependent coloration may have evolved as a signal to conspecifics; however, factors that may limit availability of carotenoids are poorly known. We investigated how the acquisition of carotenoids may be constrained by availability in the environment, diet, genetic make-up and health status of wild American kestrels (Falco sparverius). Plasma concentrations of siblings at the time of fledging showed a high degree of resemblance; however, a cross-fostering experiment revealed that variance was largely explained by nest of rearing, rather than nest of origin, thus indicating a low genetic component. A multivariate analysis of attributes of nestlings (sex, size, plasma proteins, immune function), parental reproduction (laying date, clutch size) and rearing conditions (brood size, size hierarchy, nestling mortality) showed only a small significant effect of leucocyte differentials on carotenoid concentrations of nestlings. A strong environmental effect on plasma carotenoids was demonstrated by levels of adult kestrels being correlated within mated pairs, and having a significant association with the abundance of voles, the primary prey species, per territory.

Full Text

The Full Text of this article is available as a PDF (223.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bendich A. Carotenoids and the immune response. J Nutr. 1989 Jan;119(1):112–115. doi: 10.1093/jn/119.1.112. [DOI] [PubMed] [Google Scholar]
  2. Bletner J. K., Mitchell R. P., Jr, Tugwell R. L. The effect of Eimeria maxima on broiler pigmentation. Poult Sci. 1966 Jul;45(4):689–694. doi: 10.3382/ps.0450689. [DOI] [PubMed] [Google Scholar]
  3. Brush A. H. Metabolism of carotenoid pigments in birds. FASEB J. 1990 Sep;4(12):2969–2977. doi: 10.1096/fasebj.4.12.2394316. [DOI] [PubMed] [Google Scholar]
  4. Camplani A., Saino N., Møller A. P. Carotenoids, sexual signals and immune function in barn swallows from Chernobyl. Proc Biol Sci. 1999 Jun 7;266(1424):1111–1116. doi: 10.1098/rspb.1999.0751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chew B. P. Role of carotenoids in the immune response. J Dairy Sci. 1993 Sep;76(9):2804–2811. doi: 10.3168/jds.S0022-0302(93)77619-5. [DOI] [PubMed] [Google Scholar]
  6. Fletcher D. L. Methodology for achieving pigment specifications. Poult Sci. 1992 Apr;71(4):733–743. doi: 10.3382/ps.0710733. [DOI] [PubMed] [Google Scholar]
  7. Haq A. U., Bailey C. A., Chinnah A. Effect of beta-carotene, canthaxanthin, lutein, and vitamin E on neonatal immunity of chicks when supplemented in the broiler breeder diets. Poult Sci. 1996 Sep;75(9):1092–1097. doi: 10.3382/ps.0751092. [DOI] [PubMed] [Google Scholar]
  8. Hill GE. Is There an Immunological Cost to Carotenoid-Based Ornamental Coloration? Am Nat. 1999 Nov;154(5):589–595. doi: 10.1086/303264. [DOI] [PubMed] [Google Scholar]
  9. Lindström J. Early development and fitness in birds and mammals. Trends Ecol Evol. 1999 Sep;14(9):343–348. doi: 10.1016/s0169-5347(99)01639-0. [DOI] [PubMed] [Google Scholar]
  10. Merilä J., Sheldon B. C. Genetic architecture of fitness and nonfitness traits: empirical patterns and development of ideas. Heredity (Edinb) 1999 Aug;83(Pt 2):103–109. doi: 10.1046/j.1365-2540.1999.00585.x. [DOI] [PubMed] [Google Scholar]
  11. Mousseau T. A., Roff D. A. Natural selection and the heritability of fitness components. Heredity (Edinb) 1987 Oct;59(Pt 2):181–197. doi: 10.1038/hdy.1987.113. [DOI] [PubMed] [Google Scholar]
  12. Negro J. J., Tella J. L., Blanco G., Forero M. G., Garrido-Fernández J. Diet explains interpopulation variation of plasma carotenoids and skin pigmentation in nestling white storks. Physiol Biochem Zool. 2000 Jan-Feb;73(1):97–101. doi: 10.1086/316724. [DOI] [PubMed] [Google Scholar]
  13. doi: 10.1098/rspb.1999.0781. [DOI] [PMC free article] [Google Scholar]
  14. Saino N, Stradi R, Ninni P, Pini E, Møller AP. Carotenoid Plasma Concentration, Immune Profile, and Plumage Ornamentation of Male Barn Swallows (Hirundo rustica). Am Nat. 1999 Oct;154(4):441–448. doi: 10.1086/303246. [DOI] [PubMed] [Google Scholar]
  15. Tella J. L., Bortolotti G. R., Dawson R. D., Forero M. G. The T-cell-mediated immune response and return rate of fledgling American kestrels are positively correlated with parental clutch size. Proc Biol Sci. 2000 May 7;267(1446):891–895. doi: 10.1098/rspb.2000.1086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tella J. L., Negro J. J., Rodríguez-Estrella R., Blanco G., Forero M. G., Blázquez M. C., Hiraldo F. A comparison of spectrophotometry and color charts for evaluating total plasma carotenoids in wild birds. Physiol Zool. 1998 Nov-Dec;71(6):708–711. doi: 10.1086/515991. [DOI] [PubMed] [Google Scholar]
  17. Tyczkowski J. K., Hamilton P. B., Ruff M. D. Altered metabolism of carotenoids during pale-bird syndrome in chickens infected with Eimeria acervulina. Poult Sci. 1991 Oct;70(10):2074–2081. doi: 10.3382/ps.0702074. [DOI] [PubMed] [Google Scholar]
  18. Villarroel M, Bird DM, Kuhnlein U. Copulatory behaviour and paternity in the American kestrel: the adaptive significance of frequent copulations. Anim Behav. 1998 Aug;56(2):289–299. doi: 10.1006/anbe.1998.0788. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES