Abstract
Aeschynanthus (Gesneriaceae) is a large genus of tropical epiphytes that is widely distributed from the Himalayas and China throughout South-East Asia to New Guinea and the Solomon Islands. Polymerase chain reaction (PCR) consensus sequences of the internal transcribed spacers (ITS) of Aeschynanthus nuclear ribosomal DNA showed sequence polymorphism that was difficult to interpret. Cloning individual sequences from the PCR product generated a phylogenetic tree of 23 Aeschynanthus species (two clones per species). The intraindividual clone pairs varied from 0 to 5.01%. We suggest that the high intraindividual sequence variation results from low molecular drive in the ITS of Aeschynanthus. However, this study shows that, despite the variation found within some individuals, it is still possible to use these data to reconstruct phylogenetic relationships of the species, suggesting that clone variation, although persistent, does not pre-date the divergence of Aeschynanthus species. The Aeschynanthus analysis revealed two major clades with different but overlapping geographic distributions and reflected classification based on morphology (particularly seed hair type).
Full Text
The Full Text of this article is available as a PDF (347.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Buckler E. S., 4th, Holtsford T. P. Zea ribosomal repeat evolution and substitution patterns. Mol Biol Evol. 1996 Apr;13(4):623–632. doi: 10.1093/oxfordjournals.molbev.a025622. [DOI] [PubMed] [Google Scholar]
- Campbell C. S., Wojciechowski M. F., Baldwin B. G., Alice L. A., Donoghue M. J. Persistent nuclear ribosomal DNA sequence polymorphism in the Amelanchier agamic complex (Rosaceae). Mol Biol Evol. 1997 Jan;14(1):81–90. doi: 10.1093/oxfordjournals.molbev.a025705. [DOI] [PubMed] [Google Scholar]
- Gernandt D. S., Liston A. Internal transcribed spacer region evolution in Larix and Pseudotsuga (Pinaceae). Am J Bot. 1999 May;86(5):711–723. [PubMed] [Google Scholar]
- Jobst J., King K., Hemleben V. Molecular evolution of the internal transcribed spacers (ITS1 and ITS2) and phylogenetic relationships among species of the family Cucurbitaceae. Mol Phylogenet Evol. 1998 Apr;9(2):204–219. doi: 10.1006/mpev.1997.0465. [DOI] [PubMed] [Google Scholar]
- Matzura O., Wennborg A. RNAdraw: an integrated program for RNA secondary structure calculation and analysis under 32-bit Microsoft Windows. Comput Appl Biosci. 1996 Jun;12(3):247–249. doi: 10.1093/bioinformatics/12.3.247. [DOI] [PubMed] [Google Scholar]
- Mes T. H., Fritsch R. M., Pollner S., Bachmann K. Evolution of the chloroplast genome and polymorphic ITS regions in Allium subg. Melanocrommyum. Genome. 1999 Apr;42(2):237–247. doi: 10.1139/g98-123. [DOI] [PubMed] [Google Scholar]
- Möller M., Cronk Q. C. Phylogeny and disjunct distribution: evolution of Saintpaulia (Gesneriaceae). Proc Biol Sci. 1997 Dec 22;264(1389):1827–1836. doi: 10.1098/rspb.1997.0252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sang T., Crawford D. J., Stuessy T. F. Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6813–6817. doi: 10.1073/pnas.92.15.6813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephan W. Tandem-repetitive noncoding DNA: forms and forces. Mol Biol Evol. 1989 Mar;6(2):198–212. doi: 10.1093/oxfordjournals.molbev.a040542. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
