Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2000 Sep 7;267(1454):1705–1710. doi: 10.1098/rspb.2000.1198

A functional angle on some after-effects in cortical vision.

C W Clifford 1, P Wenderoth 1, B Spehar 1
PMCID: PMC1690741  PMID: 12233765

Abstract

The question of how our brains and those of other animals code sensory information is of fundamental importance to neuroscience research. Visual illusions offer valuable insight into the mechanisms of perceptual coding. One such illusion, the tilt after-effect (TAE), has been studied extensively since the 1930s, yet a full explanation of the effect has remained elusive. Here, we put forward an explanation of the TAE in terms of a functional role for adaptation in the visual cortex. The proposed model accounts not only for the phenomenology of the TAE, but also for spatial interactions in perceived tilt and the effects of adaptation on the perception of direction of motion and colour. We discuss the implications of the model for understanding the effects of adaptation and surround stimulation on the response properties of cortical neurons.

Full Text

The Full Text of this article is available as a PDF (376.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ATTNEAVE F. Some informational aspects of visual perception. Psychol Rev. 1954 May;61(3):183–193. doi: 10.1037/h0054663. [DOI] [PubMed] [Google Scholar]
  2. Albright T. D., Desimone R., Gross C. G. Columnar organization of directionally selective cells in visual area MT of the macaque. J Neurophysiol. 1984 Jan;51(1):16–31. doi: 10.1152/jn.1984.51.1.16. [DOI] [PubMed] [Google Scholar]
  3. Allman J., Miezin F., McGuinness E. Direction- and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT). Perception. 1985;14(2):105–126. doi: 10.1068/p140105. [DOI] [PubMed] [Google Scholar]
  4. Atick J. J., Li Z., Redlich A. N. What does post-adaptation color appearance reveal about cortical color representation? Vision Res. 1993 Jan;33(1):123–129. doi: 10.1016/0042-6989(93)90065-5. [DOI] [PubMed] [Google Scholar]
  5. Blakemore C., Tobin E. A. Lateral inhibition between orientation detectors in the cat's visual cortex. Exp Brain Res. 1972;15(4):439–440. doi: 10.1007/BF00234129. [DOI] [PubMed] [Google Scholar]
  6. Carandini M., Heeger D. J. Summation and division by neurons in primate visual cortex. Science. 1994 May 27;264(5163):1333–1336. doi: 10.1126/science.8191289. [DOI] [PubMed] [Google Scholar]
  7. Derrington A. M., Krauskopf J., Lennie P. Chromatic mechanisms in lateral geniculate nucleus of macaque. J Physiol. 1984 Dec;357:241–265. doi: 10.1113/jphysiol.1984.sp015499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Georgeson M. A. Spatial frequency selectivity of a visual tilt illusion. Nature. 1973 Sep 7;245(5419):43–45. doi: 10.1038/245043a0. [DOI] [PubMed] [Google Scholar]
  9. Gilbert C. D., Wiesel T. N. The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat. Vision Res. 1990;30(11):1689–1701. doi: 10.1016/0042-6989(90)90153-c. [DOI] [PubMed] [Google Scholar]
  10. HUBEL D. H., WIESEL T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962 Jan;160:106–154. doi: 10.1113/jphysiol.1962.sp006837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kohonen T., Oja E. Fast adaptive formation of orthogonalizing filters and associative memory in recurrent networks of neuron-like elements. Biol Cybern. 1976 Jan 8;21(2):85–95. doi: 10.1007/BF01259390. [DOI] [PubMed] [Google Scholar]
  12. Krauskopf J., Williams D. R., Heeley D. W. Cardinal directions of color space. Vision Res. 1982;22(9):1123–1131. doi: 10.1016/0042-6989(82)90077-3. [DOI] [PubMed] [Google Scholar]
  13. Levinson E., Sekuler R. Adaptation alters perceived direction of motion. Vision Res. 1976;16(7):779–781. doi: 10.1016/0042-6989(76)90189-9. [DOI] [PubMed] [Google Scholar]
  14. MORANT R. B., HARRIS J. R. TWO DIFFERENT AFTER-EFFECTS OF EXPOSURE TO VISUAL TILTS. Am J Psychol. 1965 Jun;78:218–226. [PubMed] [Google Scholar]
  15. MacLeod D. I., Boynton R. M. Chromaticity diagram showing cone excitation by stimuli of equal luminance. J Opt Soc Am. 1979 Aug;69(8):1183–1186. doi: 10.1364/josa.69.001183. [DOI] [PubMed] [Google Scholar]
  16. Mather G. The movement aftereffect and a distribution-shift model for coding the direction of visual movement. Perception. 1980;9(4):379–392. doi: 10.1068/p090379. [DOI] [PubMed] [Google Scholar]
  17. Mitchell D. E., Muir D. W. Does the tilt after-effect occur in the oblique meridian? Vision Res. 1976;16(6):609–613. doi: 10.1016/0042-6989(76)90007-9. [DOI] [PubMed] [Google Scholar]
  18. Mountcastle V. B. The columnar organization of the neocortex. Brain. 1997 Apr;120(Pt 4):701–722. doi: 10.1093/brain/120.4.701. [DOI] [PubMed] [Google Scholar]
  19. Müller J. R., Metha A. B., Krauskopf J., Lennie P. Rapid adaptation in visual cortex to the structure of images. Science. 1999 Aug 27;285(5432):1405–1408. doi: 10.1126/science.285.5432.1405. [DOI] [PubMed] [Google Scholar]
  20. O'Toole B., Wenderoth P. The tilt illusion: repulsion and attraction effects in the oblique meridian. Vision Res. 1977;17(3):367–374. doi: 10.1016/0042-6989(77)90025-6. [DOI] [PubMed] [Google Scholar]
  21. Patterson R., Becker S. Direction-selective adaptation and simultaneous contrast induced by stereoscopic (cyclopean) motion. Vision Res. 1996 Jun;36(12):1773–1781. doi: 10.1016/0042-6989(95)00239-1. [DOI] [PubMed] [Google Scholar]
  22. Pouget A., Zhang K., Deneve S., Latham P. E. Statistically efficient estimation using population coding. Neural Comput. 1998 Feb 15;10(2):373–401. doi: 10.1162/089976698300017809. [DOI] [PubMed] [Google Scholar]
  23. Schrater P. R., Simoncelli E. P. Local velocity representation: evidence from motion adaptation. Vision Res. 1998 Dec;38(24):3899–3912. doi: 10.1016/s0042-6989(98)00088-1. [DOI] [PubMed] [Google Scholar]
  24. Somers D. C., Nelson S. B., Sur M. An emergent model of orientation selectivity in cat visual cortical simple cells. J Neurosci. 1995 Aug;15(8):5448–5465. doi: 10.1523/JNEUROSCI.15-08-05448.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Srinivasan M. V., Laughlin S. B., Dubs A. Predictive coding: a fresh view of inhibition in the retina. Proc R Soc Lond B Biol Sci. 1982 Nov 22;216(1205):427–459. doi: 10.1098/rspb.1982.0085. [DOI] [PubMed] [Google Scholar]
  26. Wainwright M. J. Visual adaptation as optimal information transmission. Vision Res. 1999 Nov;39(23):3960–3974. doi: 10.1016/s0042-6989(99)00101-7. [DOI] [PubMed] [Google Scholar]
  27. Ware C., Mitchell D. E. The spatial selectivity of the tilt aftereffect. Vision Res. 1974 Aug;14(8):735–737. doi: 10.1016/0042-6989(74)90072-8. [DOI] [PubMed] [Google Scholar]
  28. Watkins D. W., Berkley M. A. The orientation selectivity of single neurons in cat striate cortex. Exp Brain Res. 1974 Feb 28;19(4):433–446. doi: 10.1007/BF00234465. [DOI] [PubMed] [Google Scholar]
  29. Webster M. A., Mollon J. D. Changes in colour appearance following post-receptoral adaptation. Nature. 1991 Jan 17;349(6306):235–238. doi: 10.1038/349235a0. [DOI] [PubMed] [Google Scholar]
  30. Webster M. A., Mollon J. D. The influence of contrast adaptation on color appearance. Vision Res. 1994 Aug;34(15):1993–2020. doi: 10.1016/0042-6989(94)90028-0. [DOI] [PubMed] [Google Scholar]
  31. Wenderoth P., Johnstone S. Possible neural substrates for orientation analysis and perception. Perception. 1987;16(6):693–709. doi: 10.1068/p160693. [DOI] [PubMed] [Google Scholar]
  32. Wenderoth P., Johnstone S. The different mechanisms of the direct and indirect tilt illusions. Vision Res. 1988;28(2):301–312. doi: 10.1016/0042-6989(88)90158-7. [DOI] [PubMed] [Google Scholar]
  33. Westheimer G. Simultaneous orientation contrast for lines in the human fovea. Vision Res. 1990;30(11):1913–1921. doi: 10.1016/0042-6989(90)90167-j. [DOI] [PubMed] [Google Scholar]
  34. Zaidi Q., Shapiro A. G. Adaptive orthogonalization of opponent-color signals. Biol Cybern. 1993;69(5-6):415–428. [PubMed] [Google Scholar]
  35. Zeki S. Colour coding in the cerebral cortex: the reaction of cells in monkey visual cortex to wavelengths and colours. Neuroscience. 1983 Aug;9(4):741–765. doi: 10.1016/0306-4522(83)90265-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES