Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2000 Sep 22;267(1455):1825–1831. doi: 10.1098/rspb.2000.1217

Multiple origins of XY female mice (genus Akodon): phylogenetic and chromosomal evidence.

H E Hoekstra 1, S V Edwards 1
PMCID: PMC1690748  PMID: 11052532

Abstract

Despite the diversity in sex determination across organisms, theory predicts that the evolution of XY females is rare in mammals due to fitness consequences associated with infertility or the loss of YY zygotes. We investigated this hypothesis from a phylogenetic perspective by examining the inter- and intraspecific distribution of Y chromosomes in males and females (XY females) in South American field mice (Akodon). We found that XY females occurred at appreciable frequencies (10-66%) in at least eight Akodon species, raising the possibility that this system of sex determination has arisen multiple times independently. To determine the number of origins of XY females in Akodon, we constructed a molecular phylogeny of 16 species of Akodon based on mitochondrial DNA control region sequences. Both parsimony and maximum-likelihood reconstruction of ancestral states suggest that multiple steps (gains or losses of XY females) best explain the evolution of XY females, but do not clearly differentiate between single and multiple origins. We then directly compared functional and non-functional Y chromosomes in six species by Southern blot analysis. We found that male and female Y chromosome restriction fragment length polymorphism patterns were identical within species, but always differed between species, providing evidence that XY females arose at least six times within the Akodon lineage. To our knowledge, this pattern in Akodon is the first documentation of a novel sex-determining system arising multiple times within a tight clade of mammals. In addition, this system provides a clear test of the accuracy of phylogenetic methods to reconstruct ancestral states.

Full Text

The Full Text of this article is available as a PDF (266.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agulnik A. I., Mitchell M. J., Lerner J. L., Woods D. R., Bishop C. E. A mouse Y chromosome gene encoded by a region essential for spermatogenesis and expression of male-specific minor histocompatibility antigens. Hum Mol Genet. 1994 Jun;3(6):873–878. doi: 10.1093/hmg/3.6.873. [DOI] [PubMed] [Google Scholar]
  2. Bianchi N. O., Bianchi M. S., Bailliet G., de la Chapelle A. Characterization and sequencing of the sex determining region Y gene (Sry) in Akodon (Cricetidae) species with sex reversed females. Chromosoma. 1993 Jun;102(6):389–395. doi: 10.1007/BF00360403. [DOI] [PubMed] [Google Scholar]
  3. Bianchi N. O., Contreras J. R. The chromosomes of the field mouse Akodon azarae (Cricetidae, Rodentia) with special reference to sex chromosome anomalies. Cytogenetics. 1967;6(5):306–313. doi: 10.1159/000129952. [DOI] [PubMed] [Google Scholar]
  4. Bull J. J. Sex determining mechanisms: an evolutionary perspective. Experientia. 1985 Oct 15;41(10):1285–1296. doi: 10.1007/BF01952071. [DOI] [PubMed] [Google Scholar]
  5. Burgos M., Jiménez R., Díaz de la Guardia R. XY females in Microtus cabrerae (Rodentia, Microtidae): a case of possibly Y-linked sex reversal. Cytogenet Cell Genet. 1988;49(4):275–277. doi: 10.1159/000132676. [DOI] [PubMed] [Google Scholar]
  6. Eicher E. M., Washburn L. L., Whitney J. B., 3rd, Morrow K. E. Mus poschiavinus Y chromosome in the C57BL/6J murine genome causes sex reversal. Science. 1982 Aug 6;217(4559):535–537. doi: 10.1126/science.7089579. [DOI] [PubMed] [Google Scholar]
  7. Espinosa M. B., Vitullo A. D. Offspring sex-ratio and reproductive performance in heterogametic females of the South American field mouse Akodon azarae. Reproduction in heterogametic Akodon azarae females. Hereditas. 1996;124(1):57–62. doi: 10.1111/j.1601-5223.1996.00057.x. [DOI] [PubMed] [Google Scholar]
  8. Fredga K. Aberrant sex chromosome mechanisms in mammals. Evolutionary aspects. Differentiation. 1983;23 (Suppl):S23–S30. doi: 10.1007/978-3-642-69150-8_4. [DOI] [PubMed] [Google Scholar]
  9. Fredga K., Gropp A., Winking H., Frank F. Fertile XX- and XY-type females in the wood lemming Myopus schisticolor. Nature. 1976 May 20;261(5557):225–227. doi: 10.1038/261225a0. [DOI] [PubMed] [Google Scholar]
  10. Huelsenbeck J. P., Rannala B. Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science. 1997 Apr 11;276(5310):227–232. doi: 10.1126/science.276.5310.227. [DOI] [PubMed] [Google Scholar]
  11. Marín I., Baker B. S. The evolutionary dynamics of sex determination. Science. 1998 Sep 25;281(5385):1990–1994. doi: 10.1126/science.281.5385.1990. [DOI] [PubMed] [Google Scholar]
  12. Ree R. H., Donoghue M. J. Step matrices and the interpretation of homoplasy. Syst Biol. 1998 Dec;47(4):582–588. doi: 10.1080/106351598260590. [DOI] [PubMed] [Google Scholar]
  13. Rieger T. T., Langguth A., Weimer T. A. Allozymic characterization and evolutionary relationships in the Brazilian Akodon cursor species group (Rodentia-Cricetidae). Biochem Genet. 1995 Oct;33(9-10):283–295. doi: 10.1007/BF02399928. [DOI] [PubMed] [Google Scholar]
  14. Smith M. F., Patton J. L. Variation in mitochondrial cytochrome b sequence in natural populations of South American akodontine rodents (Muridae: Sigmodontinae). Mol Biol Evol. 1991 Jan;8(1):85–103. doi: 10.1093/oxfordjournals.molbev.a040638. [DOI] [PubMed] [Google Scholar]
  15. Sullivan J., Holsinger K. E., Simon C. Among-site rate variation and phylogenetic analysis of 12S rRNA in sigmodontine rodents. Mol Biol Evol. 1995 Nov;12(6):988–1001. doi: 10.1093/oxfordjournals.molbev.a040292. [DOI] [PubMed] [Google Scholar]
  16. Sánchez A., Bullejos M., Burgos M., Hera C., Stamatopoulos C., Diaz De la Guardia R., Jiménez R. Females of four mole species of genus Talpa (insectivora, mammalia) are true hermaphrodites with ovotestes. Mol Reprod Dev. 1996 Jul;44(3):289–294. doi: 10.1002/(SICI)1098-2795(199607)44:3<289::AID-MRD2>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  17. Voelker G., Edwards S. V. Can weighting improve bushy trees? Models of cytochrome b evolution and the molecular systematics of pipits and wagtails (Aves: Motacillidae). Syst Biol. 1998 Dec;47(4):589–603. doi: 10.1080/106351598260608. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES