Abstract
We examined phylogenetic relationships among Daphnia using mitochondrial DNA (mtDNA) sequences from the small subunit ribosomal RNA (12S), cytochrome c oxidase subunit I and nuclear DNA sequences from the first and second internal transcribed spacer representing 1612 base positions. Phylogenetic analyses using several species of the three main Daphnia subgenera, Ctenodaphnia, Hyalodaphnia and Daphnia, revealed that the Hyalodaphnia are a monophyletic sister group of the Daphnia. Most Hyalodaphnia species occur on one continent, whereas only three are found in North America and Europe. Endemicity of species is associated with variation in thermal tolerance and habitat differentiation. Although many species of the Hyalodaphnia are known to hybridize in nature, mtDNA divergence is relatively high ca. 9%) compared to other hybridizing arthropods (ca. 3%). Reproductive isolation in Daphnia seems to evolve significantly slower than genetic isolation. We related these findings to what is known about the ecology and genetics of Daphnia in order to better understand the evolutionary diversification of lineages. The relationship of these data to phylogenetic patterns is discussed in the context of speciation processes in Daphnia.
Full Text
The Full Text of this article is available as a PDF (267.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brower A. V. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6491–6495. doi: 10.1073/pnas.91.14.6491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caccone A., Garcia B. A., Powell J. R. Evolution of the mitochondrial DNA control region in the Anopheles gambiae complex. Insect Mol Biol. 1996 Feb;5(1):51–59. doi: 10.1111/j.1365-2583.1996.tb00040.x. [DOI] [PubMed] [Google Scholar]
- Colbourne J. K., Hebert P. D. The systematics of North American Daphnia (Crustacea: Anomopoda): a molecular phylogenetic approach. Philos Trans R Soc Lond B Biol Sci. 1996 Mar 29;351(1337):349–360. doi: 10.1098/rstb.1996.0028. [DOI] [PubMed] [Google Scholar]
- De Rijk P., De Wachter R. DCSE, an interactive tool for sequence alignment and secondary structure research. Comput Appl Biosci. 1993 Dec;9(6):735–740. doi: 10.1093/bioinformatics/9.6.735. [DOI] [PubMed] [Google Scholar]
- Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994 Oct;3(5):294–299. [PubMed] [Google Scholar]
- Higgins D. G., Thompson J. D., Gibson T. J. Using CLUSTAL for multiple sequence alignments. Methods Enzymol. 1996;266:383–402. doi: 10.1016/s0076-6879(96)66024-8. [DOI] [PubMed] [Google Scholar]
- Hillis D. M., Huelsenbeck J. P. Signal, noise, and reliability in molecular phylogenetic analyses. J Hered. 1992 May-Jun;83(3):189–195. doi: 10.1093/oxfordjournals.jhered.a111190. [DOI] [PubMed] [Google Scholar]
- Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980 Dec;16(2):111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
- Kjer K. M. Use of rRNA secondary structure in phylogenetic studies to identify homologous positions: an example of alignment and data presentation from the frogs. Mol Phylogenet Evol. 1995 Sep;4(3):314–330. doi: 10.1006/mpev.1995.1028. [DOI] [PubMed] [Google Scholar]
- Lynch M., Jarrell P. E. A method for calibrating molecular clocks and its application to animal mitochondrial DNA. Genetics. 1993 Dec;135(4):1197–1208. doi: 10.1093/genetics/135.4.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Posada D., Crandall K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817–818. doi: 10.1093/bioinformatics/14.9.817. [DOI] [PubMed] [Google Scholar]
- Rodríguez F., Oliver J. L., Marín A., Medina J. R. The general stochastic model of nucleotide substitution. J Theor Biol. 1990 Feb 22;142(4):485–501. doi: 10.1016/s0022-5193(05)80104-3. [DOI] [PubMed] [Google Scholar]
- Rzhetsky A., Nei M. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol. 1992 Oct;35(4):367–375. doi: 10.1007/BF00161174. [DOI] [PubMed] [Google Scholar]
- Schierwater B., Ender A., Schwenk K., Spaak P., Streit B. The evolutionary ecology of Daphnia. EXS. 1994;69:495–508. doi: 10.1007/978-3-0348-7527-1_28. [DOI] [PubMed] [Google Scholar]
- Schlötterer C., Hauser M. T., von Haeseler A., Tautz D. Comparative evolutionary analysis of rDNA ITS regions in Drosophila. Mol Biol Evol. 1994 May;11(3):513–522. doi: 10.1093/oxfordjournals.molbev.a040131. [DOI] [PubMed] [Google Scholar]
- Schwenk K. Interspecific hybridization in Daphnia: distinction and origin of hybrid matrilines. Mol Biol Evol. 1993 Nov;10(6):1289–1302. doi: 10.1093/oxfordjournals.molbev.a040076. [DOI] [PubMed] [Google Scholar]
- Taylor D. J., Hebert P. D., Colbourne J. K. Phylogenetics and evolution of the Daphnia longispina group (Crustacea) based on 12S rDNA sequence and allozyme variation. Mol Phylogenet Evol. 1996 Jun;5(3):495–510. doi: 10.1006/mpev.1996.0045. [DOI] [PubMed] [Google Scholar]
- Taylor D. J., Hebert P. D. Habitat-dependent hybrid parentage and differential introgression between neighboringly sympatric Daphnia species. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7079–7083. doi: 10.1073/pnas.90.15.7079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van de Peer Y., Van den Broeck I., De Rijk P., De Wachter R. Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res. 1994 Sep;22(17):3488–3494. doi: 10.1093/nar/22.17.3488. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.