Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2000 Sep 22;267(1455):1843–1850. doi: 10.1098/rspb.2000.1219

Geographic range size and evolutionary age in birds.

T J Webb 1, K J Gaston 1
PMCID: PMC1690757  PMID: 11052534

Abstract

Together with patterns of speciation and extinction, post-speciation transformations in the range sizes of individual species determine the form of contemporary species range-size distributions. However, the methodological problems associated with tracking the dynamics of a species' range size over evolutionary time have precluded direct study of such range-size transformations, although indirect evidence has led to several models being proposed describing the form that they might take. Here, we use independently derived molecular data to estimate ages of species in six monophyletic groups of birds, and examine the relationship between species age and global geographic range size. We present strong evidence that avian range sizes are not static over evolutionary time. In addition, it seems that, with the regular exception of certain taxa (for example island endemics and some threatened species), range-size transformations are non-random in birds. In general, range sizes appear to expand relatively rapidly post speciation; subsequently; and perhaps more gradually, they then decline as species age. We discuss these results with reference to the various models of range-size dynamics that have been proposed.

Full Text

The Full Text of this article is available as a PDF (257.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bermingham E., Rohwer S., Freeman S., Wood C. Vicariance biogeography in the Pleistocene and speciation in North American wood warblers: a test of Mengel's model. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6624–6628. doi: 10.1073/pnas.89.14.6624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bloomer P., Crowe T. M. Francolin phylogenetics: molecular, morphobehavioral, and combined evidence. Mol Phylogenet Evol. 1998 Apr;9(2):236–254. doi: 10.1006/mpev.1997.0469. [DOI] [PubMed] [Google Scholar]
  3. Cicero C., Johnson N. K. Molecular phylogeny and ecological diversification in a clade of New World songbirds (genus Vireo). Mol Ecol. 1998 Oct;7(10):1359–1370. doi: 10.1046/j.1365-294x.1998.00483.x. [DOI] [PubMed] [Google Scholar]
  4. Fleischer R. C., McIntosh C. E., Tarr C. L. Evolution on a volcanic conveyor belt: using phylogeographic reconstructions and K-Ar-based ages of the Hawaiian Islands to estimate molecular evolutionary rates. Mol Ecol. 1998 Apr;7(4):533–545. doi: 10.1046/j.1365-294x.1998.00364.x. [DOI] [PubMed] [Google Scholar]
  5. Friesen V. L., Anderson D. J. Phylogeny and evolution of the Sulidae (Aves:Pelecaniformes): a test of alternative modes of speciation. Mol Phylogenet Evol. 1997 Apr;7(2):252–260. doi: 10.1006/mpev.1996.0397. [DOI] [PubMed] [Google Scholar]
  6. Gaggiotti O. E., Excoffier L. A simple method of removing the effect of a bottleneck and unequal population sizes on pairwise genetic distances. Proc Biol Sci. 2000 Jan 7;267(1438):81–87. doi: 10.1098/rspb.2000.0970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. García-Moreno J., Arctander P., Fjeldså J. A case of rapid diversification in the neotropics: phylogenetic relationships among Cranioleuca spinetails (Aves, Furnariidae). Mol Phylogenet Evol. 1999 Aug;12(3):273–281. doi: 10.1006/mpev.1999.0617. [DOI] [PubMed] [Google Scholar]
  8. Helbig A. J., Seibold I. Molecular phylogeny of Palearctic-African Acrocephalus and Hippolais Warblers (Aves: Sylviidae). Mol Phylogenet Evol. 1999 Mar;11(2):246–260. doi: 10.1006/mpev.1998.0571. [DOI] [PubMed] [Google Scholar]
  9. Jablonski D. Heritability at the species level: analysis of geographic ranges of cretaceous mollusks. Science. 1987 Oct 16;238(4825):360–363. doi: 10.1126/science.238.4825.360. [DOI] [PubMed] [Google Scholar]
  10. Johnson K. P., Sorenson M. D. Comparing molecular evolution in two mitochondrial protein coding genes (cytochrome b and ND2) in the dabbling ducks (Tribe: Anatini). Mol Phylogenet Evol. 1998 Aug;10(1):82–94. doi: 10.1006/mpev.1997.0481. [DOI] [PubMed] [Google Scholar]
  11. Krajewski C., King D. G. Molecular divergence and phylogeny: rates and patterns of cytochrome b evolution in cranes. Mol Biol Evol. 1996 Jan;13(1):21–30. doi: 10.1093/oxfordjournals.molbev.a025558. [DOI] [PubMed] [Google Scholar]
  12. Martin A. P., Palumbi S. R. Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4087–4091. doi: 10.1073/pnas.90.9.4087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Miller A. I. A new look at age and area: the geographic and environmental expansion of genera during the Ordovician Radiation. Paleobiology. 1997;23(4):410–419. doi: 10.1017/s0094837300019813. [DOI] [PubMed] [Google Scholar]
  14. Omland K. E., Lanyon S. M., Fritz S. J. A molecular phylogeny of the New World orioles (Icterus): the importance of dense taxon sampling. Mol Phylogenet Evol. 1999 Jul;12(2):224–239. doi: 10.1006/mpev.1999.0611. [DOI] [PubMed] [Google Scholar]
  15. doi: 10.1098/rspb.1999.0825. [DOI] [PMC free article] [Google Scholar]
  16. doi: 10.1098/rstb.1998.0206. [DOI] [PMC free article] [Google Scholar]
  17. doi: 10.1098/rstb.1998.0204. [DOI] [PMC free article] [Google Scholar]
  18. Randi E. A mitochondrial cytochrome B phylogeny of the Alectoris partridges. Mol Phylogenet Evol. 1996 Oct;6(2):214–227. doi: 10.1006/mpev.1996.0072. [DOI] [PubMed] [Google Scholar]
  19. Shields G. F., Wilson A. C. Calibration of mitochondrial DNA evolution in geese. J Mol Evol. 1987;24(3):212–217. doi: 10.1007/BF02111234. [DOI] [PubMed] [Google Scholar]
  20. Slikas B. Phylogeny of the avian family Ciconiidae (storks) based on cytochrome b sequences and DNA-DNA hybridization distances. Mol Phylogenet Evol. 1997 Dec;8(3):275–300. doi: 10.1006/mpev.1997.0431. [DOI] [PubMed] [Google Scholar]
  21. Sorenson M. D., Cooper A., Paxinos E. E., Quinn T. W., James H. F., Olson S. L., Fleischer R. C. Relationships of the extinct moa-nalos, flightless Hawaiian waterfowl, based on ancient DNA. Proc Biol Sci. 1999 Nov 7;266(1434):2187–2193. doi: 10.1098/rspb.1999.0907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zink R. M., Blackwell-Rago R. C., Ronquist F. The shifting roles of dispersal and vicariance in biogeography. Proc Biol Sci. 2000 Mar 7;267(1442):497–503. doi: 10.1098/rspb.2000.1028. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES